Publicação:
Risk prediction for weed infestation using classification rules

dc.contributor.authorBressan, Glaucia M.
dc.contributor.authorOliveira, Vilma A.
dc.contributor.authorBoaventura, Maurilio [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:24:03Z
dc.date.available2014-05-27T11:24:03Z
dc.date.issued2009-12-01
dc.description.abstractThis paper proposes a fuzzy classification system for the risk of infestation by weeds in agricultural zones considering the variability of weeds. The inputs of the system are features of the infestation extracted from estimated maps by kriging for the weed seed production and weed coverage, and from the competitiveness, inferred from narrow and broad-leaved weeds. Furthermore, a Bayesian network classifier is used to extract rules from data which are compared to the fuzzy rule set obtained on the base of specialist knowledge. Results for the risk inference in a maize crop field are presented and evaluated by the estimated yield loss. © 2009 IEEE.en
dc.description.affiliationDepartamento de Engenharia Elétrica Universidade de São Paulo, 13566-590, São Carlos, SP
dc.description.affiliationDepartamento de Ciências de Computação e Estatística Universidade Estadual Paulista, 15054-000, São José do Rio Preto
dc.description.affiliationUnespDepartamento de Ciências de Computação e Estatística Universidade Estadual Paulista, 15054-000, São José do Rio Preto
dc.format.extent1798-1803
dc.identifierhttp://dx.doi.org/10.1109/CCA.2009.5280694
dc.identifier.citationProceedings of the IEEE International Conference on Control Applications, p. 1798-1803.
dc.identifier.doi10.1109/CCA.2009.5280694
dc.identifier.lattes6958497786939585
dc.identifier.scopus2-s2.0-74049100180
dc.identifier.urihttp://hdl.handle.net/11449/71282
dc.language.isoeng
dc.relation.ispartofProceedings of the IEEE International Conference on Control Applications
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAgricultural zones
dc.subjectBayesian network classifiers
dc.subjectClassification rules
dc.subjectCrop fields
dc.subjectFuzzy classification systems
dc.subjectFuzzy rule set
dc.subjectKriging
dc.subjectRisk predictions
dc.subjectWeed infestation
dc.subjectWeed seed
dc.subjectYield loss
dc.subjectBayesian networks
dc.subjectCompetition
dc.subjectInference engines
dc.subjectRisk perception
dc.titleRisk prediction for weed infestation using classification rulesen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.author.lattes6958497786939585
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos