Deep learning waveform anomaly detector for numerical relativity catalogs
| dc.contributor.author | Pereira, Tibério | |
| dc.contributor.author | Sturani, Riccardo [UNESP] | |
| dc.contributor.institution | Universidade Federal do Rio Grande do Norte | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T18:37:41Z | |
| dc.date.issued | 2024-02-01 | |
| dc.description.abstract | Numerical Relativity has been of fundamental importance for studying compact binary coalescence dynamics, waveform modelling, and eventually for gravitational waves observations. As the sensitivity of the detector network improves, more precise template modelling will be necessary to guarantee a more accurate estimation of astrophysical parameters. To help improve the accuracy of numerical relativity catalogs, we developed a deep learning model capable of detecting anomalous waveforms. We analyzed 1341 binary black hole simulations from the SXS catalog with various mass-ratios and spins, considering waveform dominant and higher modes. In the set of waveform analyzed, we found and categorised seven types of anomalies appearing in the coalescence phases. | en |
| dc.description.affiliation | Departamento de Física Universidade Federal do Rio Grande do Norte, RN | |
| dc.description.affiliation | Instituto de Física Teórica UNESP-Universidade Estadual Paulista and ICTP South American Institute for Fundamental Research, SP | |
| dc.description.affiliationUnesp | Instituto de Física Teórica UNESP-Universidade Estadual Paulista and ICTP South American Institute for Fundamental Research, SP | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorship | ICTP South American Institute for Fundamental Research | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | ICTP South American Institute for Fundamental Research: 2016/01343-7 | |
| dc.description.sponsorshipId | CNPq: 310165/2021-0 | |
| dc.identifier | http://dx.doi.org/10.1007/s10714-024-03216-w | |
| dc.identifier.citation | General Relativity and Gravitation, v. 56, n. 2, 2024. | |
| dc.identifier.doi | 10.1007/s10714-024-03216-w | |
| dc.identifier.issn | 1572-9532 | |
| dc.identifier.issn | 0001-7701 | |
| dc.identifier.scopus | 2-s2.0-85185258685 | |
| dc.identifier.uri | https://hdl.handle.net/11449/298638 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | General Relativity and Gravitation | |
| dc.source | Scopus | |
| dc.subject | Anomaly detector | |
| dc.subject | Deep learning | |
| dc.subject | Gravitational waves | |
| dc.subject | Numerical relativity | |
| dc.title | Deep learning waveform anomaly detector for numerical relativity catalogs | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0003-1856-6881[1] | |
| unesp.author.orcid | 0000-0003-2157-4401[2] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica, São Paulo | pt |

