Logo do repositório

Deep learning waveform anomaly detector for numerical relativity catalogs

dc.contributor.authorPereira, Tibério
dc.contributor.authorSturani, Riccardo [UNESP]
dc.contributor.institutionUniversidade Federal do Rio Grande do Norte
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:37:41Z
dc.date.issued2024-02-01
dc.description.abstractNumerical Relativity has been of fundamental importance for studying compact binary coalescence dynamics, waveform modelling, and eventually for gravitational waves observations. As the sensitivity of the detector network improves, more precise template modelling will be necessary to guarantee a more accurate estimation of astrophysical parameters. To help improve the accuracy of numerical relativity catalogs, we developed a deep learning model capable of detecting anomalous waveforms. We analyzed 1341 binary black hole simulations from the SXS catalog with various mass-ratios and spins, considering waveform dominant and higher modes. In the set of waveform analyzed, we found and categorised seven types of anomalies appearing in the coalescence phases.en
dc.description.affiliationDepartamento de Física Universidade Federal do Rio Grande do Norte, RN
dc.description.affiliationInstituto de Física Teórica UNESP-Universidade Estadual Paulista and ICTP South American Institute for Fundamental Research, SP
dc.description.affiliationUnespInstituto de Física Teórica UNESP-Universidade Estadual Paulista and ICTP South American Institute for Fundamental Research, SP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipICTP South American Institute for Fundamental Research
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdICTP South American Institute for Fundamental Research: 2016/01343-7
dc.description.sponsorshipIdCNPq: 310165/2021-0
dc.identifierhttp://dx.doi.org/10.1007/s10714-024-03216-w
dc.identifier.citationGeneral Relativity and Gravitation, v. 56, n. 2, 2024.
dc.identifier.doi10.1007/s10714-024-03216-w
dc.identifier.issn1572-9532
dc.identifier.issn0001-7701
dc.identifier.scopus2-s2.0-85185258685
dc.identifier.urihttps://hdl.handle.net/11449/298638
dc.language.isoeng
dc.relation.ispartofGeneral Relativity and Gravitation
dc.sourceScopus
dc.subjectAnomaly detector
dc.subjectDeep learning
dc.subjectGravitational waves
dc.subjectNumerical relativity
dc.titleDeep learning waveform anomaly detector for numerical relativity catalogsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-1856-6881[1]
unesp.author.orcid0000-0003-2157-4401[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica, São Paulopt

Arquivos