Logotipo do repositório
 

Publicação:
On the determination of epsilon during discriminative GMM training

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Discriminative training of Gaussian Mixture Models (GMMs) for speech or speaker recognition purposes is usually based on the gradient descent method, in which the iteration step-size, ε, uses to be defined experimentally. In this letter, we derive an equation to adaptively determine ε, by showing that the second-order Newton-Raphson iterative method to find roots of equations is equivalent to the gradient descent algorithm. © 2010 IEEE.

Descrição

Palavras-chave

Discriminative training of Gaussian Mixture Models (GMMs), Markov Models, Speaker identification, Speech recognition, Discriminative training, Gaussian mixture models, Gradient descent algorithms, Gradient Descent method, Iteration step, Newton-Raphson iterative method, Second orders, Speaker recognition, Gaussian distribution, Iterative methods, Loudspeakers, Markov processes

Idioma

Inglês

Como citar

Proceedings - 2010 IEEE International Symposium on Multimedia, ISM 2010, p. 362-364.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação