Publicação: On the determination of epsilon during discriminative GMM training
Nenhuma Miniatura disponível
Data
2010-12-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto![Acesso Aberto](assets/repositorio/images/logo_acesso_aberto_simples.png)
![Acesso Aberto](assets/repositorio/images/logo_acesso_aberto_simples.png)
Resumo
Discriminative training of Gaussian Mixture Models (GMMs) for speech or speaker recognition purposes is usually based on the gradient descent method, in which the iteration step-size, ε, uses to be defined experimentally. In this letter, we derive an equation to adaptively determine ε, by showing that the second-order Newton-Raphson iterative method to find roots of equations is equivalent to the gradient descent algorithm. © 2010 IEEE.
Descrição
Palavras-chave
Discriminative training of Gaussian Mixture Models (GMMs), Markov Models, Speaker identification, Speech recognition, Discriminative training, Gaussian mixture models, Gradient descent algorithms, Gradient Descent method, Iteration step, Newton-Raphson iterative method, Second orders, Speaker recognition, Gaussian distribution, Iterative methods, Loudspeakers, Markov processes
Idioma
Inglês
Como citar
Proceedings - 2010 IEEE International Symposium on Multimedia, ISM 2010, p. 362-364.