Logo do repositório

New approach for predicting nitrogen and pigments in maize from hyperspectral data and machine learning models

dc.contributor.authorSilva, Bianca Cavalcante da [UNESP]
dc.contributor.authorPrado, Renato de Mello [UNESP]
dc.contributor.authorBaio, Fábio Henrique Rojo
dc.contributor.authorCampos, Cid Naudi Silva
dc.contributor.authorTeodoro, Larissa Pereira Ribeiro
dc.contributor.authorTeodoro, Paulo Eduardo
dc.contributor.authorSantana, Dthenifer Cordeiro [UNESP]
dc.contributor.authorFernandes, Thiago Feliph Silva [UNESP]
dc.contributor.authorSilva Junior, Carlos Antonio da
dc.contributor.authorLoureiro, Elisangela de Souza
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.contributor.institutionState University of Mato Grosso (UNEMAT)
dc.date.accessioned2025-04-29T18:40:47Z
dc.date.issued2024-01-01
dc.description.abstractFast diagnostics from hyperspectral data and machine learning (ML) models to predict nitrogen (N) and pigment content in maize crops is challenging to optimize nitrogen fertilization. This research assessed the efficiency of the five ML algorithms, the best phenological stage, and the sensitivity of the 90 spectra to estimate N and pigment content. Therefore, this field research proposes as a novelty to test which of the five ML algorithms accurately estimates nitrogen, chlorophyll, and carotenoid content in maize leaves at different phenological stages using hyperspectral band data. The treatments were arranged in a factorial scheme with four N doses (0, 54, 108, and 216 kg ha−1) combined with five leaf collection seasons at phenological stages V6 to V14. The ML models tested were artificial neural networks – ANN, decision tree adapted for prediction problems – M5P, REPTree decision tree, random forest - RF, polynomial support vector machine – PSVM, and ZeroR - ZR (control). Spectral bands 530–560 nm and 690–750 nm are effective wavelengths because the visible region with lower reflectance (530–560 nm) affects N uptake and chlorophyll and carotenoid content, while the red-edge and near-infrared region affects N and chlorophyll content. The random forest (RF) model performed better with higher correlation (r) and mean absolute error (MAE) between predicted and observed values for all variables, with the correlation coefficient (r) value being around 0.6 and the MAE below 0.5 for the prediction of chlorophyll a+b. For the prediction of flavonoids, the r was around 0.6 and the error was 0.07. Support vector machine (SVM) and RF efficiently predicted nitrogen content, in predicting of NF, the r values for both algorithms were above 0.35 and the error was below 2.75.en
dc.description.affiliationDepartment of Soils and Fertilizers Paulista State University “Júlio de Mesquita Filho” UNESP/FCAV
dc.description.affiliationFederal University of Mato Grosso Do Sul (UFMS), Chapadão Do Sul, MS
dc.description.affiliationDepartment of Agronomy State University of São Paulo (UNESP), Ilha Solteira, SP
dc.description.affiliationDepartment of Geography State University of Mato Grosso (UNEMAT), MT
dc.description.affiliationUnespDepartment of Soils and Fertilizers Paulista State University “Júlio de Mesquita Filho” UNESP/FCAV
dc.description.affiliationUnespDepartment of Agronomy State University of São Paulo (UNESP), Ilha Solteira, SP
dc.description.sponsorshipUniversidade Federal de Mato Grosso do Sul
dc.description.sponsorshipGaussian
dc.description.sponsorshipFundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul
dc.description.sponsorshipIdFundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul: 07/2022
dc.description.sponsorshipIdFundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul: 318/2022
dc.description.sponsorshipIdFundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul: 88/2021
dc.description.sponsorshipIdFundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul: 94/2023
dc.identifierhttp://dx.doi.org/10.1016/j.rsase.2023.101110
dc.identifier.citationRemote Sensing Applications: Society and Environment, v. 33.
dc.identifier.doi10.1016/j.rsase.2023.101110
dc.identifier.issn2352-9385
dc.identifier.scopus2-s2.0-85179108387
dc.identifier.urihttps://hdl.handle.net/11449/298903
dc.language.isoeng
dc.relation.ispartofRemote Sensing Applications: Society and Environment
dc.sourceScopus
dc.subjectLeaf N content
dc.subjectNutritional diagnosis
dc.subjectPrecision agriculture
dc.subjectZea mays
dc.titleNew approach for predicting nitrogen and pigments in maize from hyperspectral data and machine learning modelsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-7102-2077[9]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos