Publicação: Modelos probabilísticos e não probabilísticos de classificação binária para pacientes com ou sem demência como auxílio na prática clínica em geriatria.
Carregando...
Arquivos
Data
Autores
Orientador
Silveira, Liciana Vaz de Arruda 

Coorientador
Pós-graduação
Biometria - IBB
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Tese de doutorado
Direito de acesso
Acesso aberto

Resumo
Os objetivos deste trabalho foram apresentar modelos de classificação (Regressão Logística, Naive Bayes, Árvores de Classificação, Random Forest, k-Vizinhos mais próximos e Redes Neurais Artificiais) e a comparação destes utilizando processos de reamostragem em um conjunto de dados da área de geriatria (diagnóstico de demência). Analisar as pressuposições de cada metodologia, vantagens, desvantagens e cenários em que cada metodologia pode ser melhor utilizada. A justificativa e relevância desse projeto se baseiam na importância e na utilidade do tema proposto, visto que a população idosa aumenta em todo o mundo (nos países desenvolvidos e nos em desenvolvimento como o Brasil), os modelos de classificação podem ser úteis aos profissionais médicos, em especial aos médicos generalistas, no diagnóstico de demências, pois em diversos momentos o diagnóstico não é simples.
Descrição
Palavras-chave
Regressão logística, Naive Bayes, Árvore de classificação, Random Forest, Algoritmo kNN, Redes neurais artificiais
Idioma
Português