Logotipo do repositório
 

Publicação:
Multi-criteria analysis of big data and big data analytics on supply chain management

dc.contributor.authorSilva, Airton M. [UNESP]
dc.contributor.authorTramarico, Claudemir L. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-03-01T20:23:30Z
dc.date.available2023-03-01T20:23:30Z
dc.date.issued2022-01-01
dc.description.abstractThis article proposes a procedure evaluating the implementation of big data and big data analytics in supply chain management through critical success factors. With the current use of big data and big data analytics technologies, structured or non-structured data have become more important in decision-making, making the process more efficient. In addition to highlighting the main critical success factors encountered in the literature, the authors developed a classification of factors using the benefits, opportunities, costs, and risks model (BOCR). In this study, the analytic hierarchy process (AHP), a multi-criteria analysis method, is applied by considering BOCR model as the main criteria in the evaluation, and big data and big data analytics as the two main alternatives. The main contributions of this work are an identification of the main critical success factors through research found in the available literature and the proposal of a procedure for evaluating the best alternative to implementing data technology in supply chain management. The proposed approach was used to evaluate the BOCR through the real implementation of data technology.en
dc.description.affiliationFaculdade de Engenharia Universidade Estadual Paulista Julio de Mesquita Filho, Campus de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333-Pedregulho, SP
dc.description.affiliationUnespFaculdade de Engenharia Universidade Estadual Paulista Julio de Mesquita Filho, Campus de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333-Pedregulho, SP
dc.format.extent280-303
dc.identifierhttp://dx.doi.org/10.1504/IJISM.2022.124420
dc.identifier.citationInternational Journal of Integrated Supply Management, v. 15, n. 3, p. 280-303, 2022.
dc.identifier.doi10.1504/IJISM.2022.124420
dc.identifier.issn1741-8097
dc.identifier.issn1477-5360
dc.identifier.scopus2-s2.0-85135189816
dc.identifier.urihttp://hdl.handle.net/11449/240577
dc.language.isoeng
dc.relation.ispartofInternational Journal of Integrated Supply Management
dc.sourceScopus
dc.subjectAHP
dc.subjectanalytic hierarchy process
dc.subjectbig data
dc.subjectbig data analytics
dc.subjectcritical success factors
dc.subjectsupply chain management
dc.titleMulti-criteria analysis of big data and big data analytics on supply chain managementen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos