Logotipo do repositório
 

Publicação:
OsteoBLAST: Computational Routine of Global Molecular Analysis Applied to Biomaterials Development

dc.contributor.authorFerreira, Marcel Rodrigues [UNESP]
dc.contributor.authorMilani, Renato
dc.contributor.authorRangel, Elidiane C. [UNESP]
dc.contributor.authorPeppelenbosch, Maikel
dc.contributor.authorZambuzzi, Willian [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversity Medical Center Rotterdam
dc.date.accessioned2021-06-25T10:37:13Z
dc.date.available2021-06-25T10:37:13Z
dc.date.issued2020-10-08
dc.description.abstractFor bone purposes, surface modifications are a common trend in biomaterials research aiming to reduce the time necessary for osteointegration, culminating in faster recovery of patients. In this scenario, analysis of intracellular signaling pathways have emerged as an important and reliable strategy to predict biological responses from in vitro approaches. We have combined global analysis of intracellular protein phosphorylation, systems biology and bioinformatics into an early biomaterial analysis routine called OsteoBLAST. We employed the routine as follows: the PamChip tyrosine kinase assay was applied to mesenchymal stem cells grown on three distinct titanium surfaces: machined, dual acid-etched and nanoHA. Then, OsteoBLAST was able to identify the most reliable spots to further obtain the differential kinome profile and finally to allow a comparison among the different surfaces. Thereafter, NetworKIN, STRING, and Cytoscape were used to build and analyze a supramolecular protein-protein interaction network, and DAVID tools identified biological signatures in the differential kinome for each surface.en
dc.description.affiliationDepartment of Chemistry and Biochemistry Institute of Biosciences São Paulo State University (UNESP)
dc.description.affiliationBioquímica e Biologia Tecidual Biology Institute Universidade de Campinas (UNICAMP)
dc.description.affiliationInstitute of Science and Technology São Paulo State University (UNESP)
dc.description.affiliationDepartment of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam
dc.description.affiliationUnespDepartment of Chemistry and Biochemistry Institute of Biosciences São Paulo State University (UNESP)
dc.description.affiliationUnespInstitute of Science and Technology São Paulo State University (UNESP)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2014/22689-3
dc.description.sponsorshipIdFAPESP: 2015/03639-8
dc.description.sponsorshipIdFAPESP: 2018/05731-7
dc.identifierhttp://dx.doi.org/10.3389/fbioe.2020.565901
dc.identifier.citationFrontiers in Bioengineering and Biotechnology, v. 8.
dc.identifier.doi10.3389/fbioe.2020.565901
dc.identifier.issn2296-4185
dc.identifier.scopus2-s2.0-85093932711
dc.identifier.urihttp://hdl.handle.net/11449/206730
dc.language.isoeng
dc.relation.ispartofFrontiers in Bioengineering and Biotechnology
dc.sourceScopus
dc.subjectalternative methods
dc.subjectanalysis
dc.subjectbioinformatics
dc.subjectbiomaterials
dc.subjectbone healing
dc.titleOsteoBLAST: Computational Routine of Global Molecular Analysis Applied to Biomaterials Developmenten
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentBioquímica e Tecnologia - IQpt

Arquivos