Logo do repositório

Charged soliton of the three-dimensional CS+BI Abelian gauge theory

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this paper, we construct a charged soliton with a finite energy and no delta function source in a pure Abelian gauge theory. Specifically, we first consider the three-dimensional Abelian gauge theory, with a Maxwell term and a level N CS term. We find a static solution that carries charge N, angular momentum N2 and whose radius is N independent. However, this solution has a divergent energy. In analogy to the replacement of the four-dimensional Maxwell action with the BI action, which renders the classical energy of a point charge finite, for the three-dimensional theory which includes a CS term such a replacement leads to a finite energy for the solution of above. We refer to this soliton as a CSBIon solution, representing a finite energy version of the fundamental (sourced) charged electron of Maxwell theory in four dimensions. In three dimensions the BI+CS action has a static charged solution with finite energy and no source, hence a soliton solution. The CSBIon, similar to its Maxwellian predecessor, has a charge N, angular momentum proportional to N and an N-independent radius. We also present other nonlinear modifications of Maxwell theory that admit similar solitons. The CSBIon may be relevant in various holographic scenarios. In particular, it may describe a D6-brane wrapping an S4 in a compactified D4-brane background. We believe that the CSBIon may play a role in condensed matter systems in 2+1 dimensions like graphene sheets.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Physical Review D, v. 107, n. 12, 2023.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso