Publicação: On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes
Nenhuma Miniatura disponível
Data
1983-12-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
The energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The perturbative series is shown to be convergent for small boxes, and an upper bound for the radius of convergence is established. Pade-approximant solutions are also constructed for boxes of any size. Numerical comparison with the exact eigenvalues-which are obtained by constructing and diagonalising the Hamiltonian in the basis of the eigenfunctions of the free particle in a box-corroborates the accuracy and range of validity of the approximate solutions, particularly the convergence and the radius of convergence of the perturbative series.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Physics A: Mathematical and General, v. 16, n. 13, p. 2943-2952, 1983.