Binding investigation between M2-1protein from hRSV and acetylated quercetin derivatives: 1H NMR, fluorescence spectroscopy, and molecular docking
Carregando...
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Fontes externas
Fontes externas
Resumo
The human Respiratory Syncytial Virus (hRSV) is the main responsible for occurrences of respiratory diseases as pneumonia and bronchiolitis in children and elderly. M2-1 protein from hRSV is an important antitermination factor for transcription process that prevents the premature dissociation of the polymerase complex, making it a potential target for developing of inhibitors of the viral replication. The present study reports the interaction of the M2-1 tetramer with pera (Q1) and tetracetylated (Q2) quercetin derivatives, which were synthesized with the objective of generating stronger bioactive compounds against oxidation process. Fluorescence experiments showed binding constants of the M2-1/compounds complexes on order of 104 M− 1 with one ligand per monomeric unit, being the affinity of Q2 stronger than Q1. The thermodynamic analysis revealed values of ΔH > 0 and ΔS > 0, suggesting that hydrophobic interactions play a key role in the formation of the complexes. Molecular docking calculations indicated that binding sites for the compounds are in contact interfaces between globular and zinc finger domains of the monomers and that hydrogen bonds and stacking interactions are important contributions for stabilization of the complexes. Thus, the interaction of the acetylated quercetin derivatives in the RNA-binding sites of M2-1 makes these potential candidates for viral replication inhibitors.
Descrição
Palavras-chave
1H RMN, Acetylated quercetin derivatives, Fluorescence spectroscopy, hRSV, M2-1, Molecular docking
Idioma
Inglês
Citação
International Journal of Biological Macromolecules, v. 111, p. 33-38.




