Equivariant characteristic classes of singular hypersurfaces
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
In this paper, we introduce definitions for the integrated equivariant Milnor number μIG and the equivariant Milnor class ℳG(Z), for singular hypersurfaces. We prove that the μIG are constant on the strata in a Whitney stratification of Z, along with the correlation ℳG(Z) = ℳG,0(Z) = 1 |G|Σi=1kμ IG(x i) for hypersurfaces hosting isolated singularities x1,...,xk, where ℳG,0(Z) denotes the 0th equivariant Milnor class of Z. We also introduce the equivariant Fulton-Johnson class of singular hypersurfaces. We give an equivariant version of Verdier's specialization morphism in homology, and also for constructible functions. This is used for finding a relation between equivariant Fulton-Johnson and Schwartz-MacPherson classes.
Descrição
Palavras-chave
Equivariant characteristic classes, Milnor number, singular hypersurfaces
Idioma
Inglês
Citação
International Journal of Mathematics, v. 36, n. 3, 2025.




