Logo do repositório

Dynamics of rotationally fissioned asteroids: Non-planar case

dc.contributor.authorBoldrin, L. A G [UNESP]
dc.contributor.authorScheeres, D. J.
dc.contributor.authorWinter, O. C. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Colorado
dc.date.accessioned2018-12-11T17:29:41Z
dc.date.available2018-12-11T17:29:41Z
dc.date.issued2016-10-01
dc.description.abstractThe rotational fission of asteroids has been studied previously with simplified models restricted to planar motion. However, the observed physical configuration of contact binaries leads one to conclude that most of them are not in a planar configuration and hence would not be restricted to planar motion once they undergo rotational fission. This motivated a study of the evolution of initially non-planar binaries created by fission. Using a two-ellipsoid model, we performed simulations taking only gravitational interactions between components into account. We simulate 91 different initial inclinations of the equator of the secondary body for 19 different mass ratios. After disruption, the binary system dynamics are chaotic, as predicted from theory. Starting the system in a non-planar configuration leads to a larger energy and enhanced coupling between the rotation state of the smaller fissioned body and the evolving orbital system, and enables re-impact to occur. This leads to differences with previous planar studies, with collisions and secondary spin fission occurring for all mass ratios with inclinations Θ0 = 40o, and mimics a Lidov-Kozai mechanism. Out of 1729 studied cases, we found that ~14 per cent result in secondary fission, ~25 per cent result in collisions and ~6 per cent have lifetimes longer than 200 yr. In Jacobson & Scheeres stable binaries only formed in cases with mass ratios q < 0.20. Our results indicate that it should be possible to obtain a stable binary with the same mechanisms for cases with mass ratios larger than this limit, but that the system should start in a non-planar configuration.en
dc.description.affiliationUNESP-Univ Estadual Paulista Grupo de Dinâmica Orbital e Planetologia
dc.description.affiliationAerospace Engineer Department University of Colorado
dc.description.affiliationUnespUNESP-Univ Estadual Paulista Grupo de Dinâmica Orbital e Planetologia
dc.format.extent3982-3992
dc.identifierhttp://dx.doi.org/10.1093/mnras/stw1607
dc.identifier.citationMonthly Notices of the Royal Astronomical Society, v. 461, n. 4, p. 3982-3992, 2016.
dc.identifier.doi10.1093/mnras/stw1607
dc.identifier.file2-s2.0-84988643143.pdf
dc.identifier.issn1365-2966
dc.identifier.issn0035-8711
dc.identifier.scopus2-s2.0-84988643143
dc.identifier.urihttp://hdl.handle.net/11449/178300
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.relation.ispartofsjr2,346
dc.relation.ispartofsjr2,346
dc.rights.accessRightsAcesso abertopt
dc.sourceScopus
dc.subjectAsteroids
dc.subjectFormation-celestial mechanics-minor planets
dc.subjectGeneral
dc.subjectLine
dc.titleDynamics of rotationally fissioned asteroids: Non-planar caseen
dc.typeArtigopt
dspace.entity.typePublication
relation.isDepartmentOfPublicationcf723ce7-c9ee-4e06-b772-346bd0a102bb
relation.isDepartmentOfPublication.latestForDiscoverycf723ce7-c9ee-4e06-b772-346bd0a102bb
unesp.departmentMatemática - FEGpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84988643143.pdf
Tamanho:
1.43 MB
Formato:
Adobe Portable Document Format
Descrição: