Logotipo do repositório
 

Publicação:
Dressing tool condition monitoring through impedance-based sensors: Part 2—neural networks and K-nearest neighbor classifier approach

dc.contributor.authorJunior, Pedro [UNESP]
dc.contributor.authorD’Addona, Doriana M.
dc.contributor.authorAguiar, Paulo [UNESP]
dc.contributor.authorTeti, Roberto
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutiondei Materiali e della Produzione Industriale
dc.date.accessioned2019-10-06T16:10:28Z
dc.date.available2019-10-06T16:10:28Z
dc.date.issued2018-12-01
dc.description.abstractThis paper presents an approach for impedance-based sensor monitoring of dressing tool condition in grinding by using the electromechanical impedance (EMI) technique. This method was introduced in Part 1 of this work and the purpose of this paper (Part 2) is to achieve an optimal selection of the excitation frequency band based on multi-layer neural networks (MLNN) and k-nearest neighbor classifier (k-NN). The proposed approach was validated on the basis of dressing tool condition information obtained from the monitoring of experimental dressing tests with two industrial stationary single-point dressing tools. Moreover, representative damage indices for diverse damage cases, obtained from impedance signatures at different frequency bands, were taken into account for MLNN data processing. The intelligent system was able to select the most damage-sensitive features based on optimal frequency band. The best models showed a general overall error lower than 2%, thus robustly contributing to the efficient automation of grinding and dressing operations. The promising results of this study foster the EMI-based sensor monitoring approach to fault diagnosis in dressing operations and its effective implementation for industrial grinding process automation.en
dc.description.affiliationFaculdade de Engenharia UNESP-University Estadual Paulista Bauru Departamento de Engenharia Elétrica, Av. Eng. Luiz Edmundo C. Coube 14-01
dc.description.affiliationDipartimento di Ingegneria Chimica Università degli Studi di Napoli Federico II dei Materiali e della Produzione Industriale
dc.description.affiliationUnespFaculdade de Engenharia UNESP-University Estadual Paulista Bauru Departamento de Engenharia Elétrica, Av. Eng. Luiz Edmundo C. Coube 14-01
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2016/02831-5
dc.description.sponsorshipIdFAPESP: 2017/16921-9
dc.identifierhttp://dx.doi.org/10.3390/s18124453
dc.identifier.citationSensors (Switzerland), v. 18, n. 12, 2018.
dc.identifier.doi10.3390/s18124453
dc.identifier.issn1424-8220
dc.identifier.scopus2-s2.0-85058646437
dc.identifier.urihttp://hdl.handle.net/11449/188509
dc.language.isoeng
dc.relation.ispartofSensors (Switzerland)
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectDressing
dc.subjectElectromechanical impedance
dc.subjectGrinding process
dc.subjectk-NN
dc.subjectMLNN
dc.subjectNeural networks
dc.subjectPiezoelectric sensors
dc.subjectSensor monitoring
dc.subjectTool condition monitoring
dc.titleDressing tool condition monitoring through impedance-based sensors: Part 2—neural networks and K-nearest neighbor classifier approachen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos