Logo do repositório

A Genetic Algorithm applied to pick sequencing for billing

dc.contributor.authorFaia Pinto, Anderson Rogerio
dc.contributor.authorCrepaldi, Antonio Fernando [UNESP]
dc.contributor.authorNagano, Marcelo Seido
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:45:08Z
dc.date.available2018-11-26T17:45:08Z
dc.date.issued2018-02-01
dc.description.abstractThis article addresses the use of Holland's Genetic Algorithms (GAs) (Holland in Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, MI, 1975) in solving an optimization problem not exploited yet by literature, which we have named Optimal Billing Sequencing (OBS). The objective of the GA proposed is to automate pick sequencing, which addresses the process of allocating the stock available for sale to the purchase orders in a portfolio, so that the maximization of the billing is the optimal result for the OBS. A modelling and computational simulation methodology has been employed. Such methodology is designed to enable the GA to meet the boundary conditions established by predefined decision restrictions and parameters. We have reached the conclusion, by means of experimental tests, that the GA developed satisfactorily solves the problem studied. In addition to a low computational overhead, the GA reduces operating costs and speeds picking decision-making processes and billing processes.en
dc.description.affiliationUniv Sao Paulo, Sch Engn Sao Carlos, Dept Prod Engn, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Fac Engn Bauru, Dept Prod Engn, Ave Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Fac Engn Bauru, Dept Prod Engn, Ave Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.format.extent405-422
dc.identifierhttp://dx.doi.org/10.1007/s10845-015-1116-7
dc.identifier.citationJournal Of Intelligent Manufacturing. Dordrecht: Springer, v. 29, n. 2, p. 405-422, 2018.
dc.identifier.doi10.1007/s10845-015-1116-7
dc.identifier.fileWOS000424642800009.pdf
dc.identifier.issn0956-5515
dc.identifier.urihttp://hdl.handle.net/11449/163832
dc.identifier.wosWOS:000424642800009
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofJournal Of Intelligent Manufacturing
dc.relation.ispartofsjr1,179
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectGenetic Algorithms
dc.subjectPicking process
dc.subjectBilling sequencing
dc.titleA Genetic Algorithm applied to pick sequencing for billingen
dc.typeArtigopt
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
relation.isDepartmentOfPublicationf995a095-9b4f-4de8-81be-4dab7990d013
relation.isDepartmentOfPublication.latestForDiscoveryf995a095-9b4f-4de8-81be-4dab7990d013
unesp.author.lattes9211187637499715[2]
unesp.author.orcid0000-0002-9090-1835[2]
unesp.departmentEngenharia de Produção - FEBpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000424642800009.pdf
Tamanho:
3 MB
Formato:
Adobe Portable Document Format
Descrição: