Logotipo do repositório
 

Publicação:
Monitoring the process of densification of 3D and 4D (tridirectional and tetradirectional) carbon/carbon composites

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Sage Publications Ltd

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Carbon fiber reinforced carbon composites can be made by iterative liquid impregnation or gas phase carbon deposition routes. In both cases, at the final processing stage the carbon fiber is embedded in carbon matrix which results in unique properties such as low density, high thermal conductivity and thermal shock resistance, low thermal expansion and high modulus, in relation to other refractory materials. In the present study assembled three-directional and four-directional preforms, having 50% volume of pores, were densified by iterative cycles of thermoset resin impregnation followed by pyrolysis under inert atmosphere, until appropriate densities were achieved. The thermoset resin is converted in a carbon matrix during pyrolysis. The iterative manufacturing process of the carbon fiber reinforced carbon composites is evaluated by means of nondestructive techniques based on X-ray computed tomography and electrical resistivity. X-ray computed tomography gives a general mapping view of the filling pores of the preforms which impacts results of the electrical resistivity. After six processing cycles and heat treatments up to 2000?, the final densities of the three-directional and four-directional carbon fiber reinforced carbon composites were 1.16g/cm(3) and an electrical resistivity of approximate to 0.07m. The configuration of preforms, three-directional or four-directional, did not alter the densification profile, in terms of increasing density and reducing porosity during the processing cycles.

Descrição

Palavras-chave

Carbon, Carbon composites, Nondestructive evaluation, Aerospace materials, X-ray computed tomography

Idioma

Inglês

Como citar

Journal Of Reinforced Plastics And Composites. London: Sage Publications Ltd, v. 34, n. 9, p. 750-760, 2015.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação