Publicação: Artificial intelligence approach for high level production of amylase using Rhizopus microsporus var. oligosporus and different agro-industrial wastes
dc.contributor.author | Fernandez Nunez, Eutimio Gustavo [UNESP] | |
dc.contributor.author | Barchi, Augusto Cesar [UNESP] | |
dc.contributor.author | Ito, Shuri [UNESP] | |
dc.contributor.author | Escaramboni, Bruna [UNESP] | |
dc.contributor.author | Herculano, Rondinelli Donizetti [UNESP] | |
dc.contributor.author | Malacrida Mayer, Cassia Roberta [UNESP] | |
dc.contributor.author | Neto, Pedro de Oliva [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:21:10Z | |
dc.date.available | 2018-11-26T17:21:10Z | |
dc.date.issued | 2017-03-01 | |
dc.description.abstract | BACKGROUND: Culture medium is a key element to be defined when biotechnologies are chosen for agro-industrial wastes reutilization. This work aimed at definition of culture medium composition using four agro-industrial wastes (wheat bran, type II wheat flour, soybean meal and sugarcane bagasse) in solid-state fermentation (SSF) of Rhizopus oligosporus, for high-level production of amylases through approaches based on artificial intelligence (AI) or response surface methodologies (RSM). First, substrates were individually assessed. Then, I-optimal mixture experimental designs were performed to determine the influence of two sets of ternary agro-industrial waste mixtures on amylase and specific amylase activities. RESULTS: The best individual substrate for amylases production was wheat bran (392.5 U g(-1)). As a rule, no significant interactions among substrates affecting amylase activities were observed for ternary systems and the approaches under consideration. A significant exception was the amylolytic activity for mixtures composed of wheat bran (91% w/w) and soybean meal (9% w/w). This finding was confirmed analytically by a combination of artificial neural network (ANN) and genetic algorithm (GA). The AI approach improved modelling quality with respect to RSM for production of fungal amylases in SSF. CONCLUSION: The I-optimal design in conjunction with ANN-GA is suggested to optimize accurately culture medium to maximize amylase production by SSF. (C) 2016 Society of Chemical Industry | en |
dc.description.affiliation | Univ Estadual Paulista, Dept Ciencias Biol, Grp Engn Bioproc, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Dept Ciencias Biol, Lab Biotecnol Ind, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Dept Ciencias Biol, Lab Fis Biofis & Biomat, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Dept Ciencias Biol, Lab Quim Alimentos & Nanobiotecnol, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Ciencias Biol, Grp Engn Bioproc, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Ciencias Biol, Lab Biotecnol Ind, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Ciencias Biol, Lab Fis Biofis & Biomat, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Ciencias Biol, Lab Quim Alimentos & Nanobiotecnol, Campus Assis,Ave Dom Antonio 2100, BR-19806900 Assis, SP, Brazil | |
dc.description.sponsorship | Fundação para o Desenvolvimento da UNESP (FUNDUNESP) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FUNDUNESP: 0312/001/14-Prope/CDC | |
dc.description.sponsorshipId | FAPESP: 14/06447-0 | |
dc.format.extent | 684-692 | |
dc.identifier | http://dx.doi.org/10.1002/jctb.5054 | |
dc.identifier.citation | Journal Of Chemical Technology And Biotechnology. Hoboken: Wiley, v. 92, n. 3, p. 684-692, 2017. | |
dc.identifier.doi | 10.1002/jctb.5054 | |
dc.identifier.issn | 0268-2575 | |
dc.identifier.lattes | 4638952263502744 | |
dc.identifier.orcid | 0000-0001-9378-9036 | |
dc.identifier.uri | http://hdl.handle.net/11449/162617 | |
dc.identifier.wos | WOS:000397400500026 | |
dc.language.iso | eng | |
dc.publisher | Wiley-Blackwell | |
dc.relation.ispartof | Journal Of Chemical Technology And Biotechnology | |
dc.relation.ispartofsjr | 0,766 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | enzymes | |
dc.subject | experimental design | |
dc.subject | industrial microbiology | |
dc.subject | mathematical modelling | |
dc.subject | waste treatment and waste minimization | |
dc.subject | solid state fermentation | |
dc.title | Artificial intelligence approach for high level production of amylase using Rhizopus microsporus var. oligosporus and different agro-industrial wastes | en |
dc.type | Artigo | |
dcterms.license | http://olabout.wiley.com/WileyCDA/Section/id-406071.html | |
dcterms.rightsHolder | Wiley-Blackwell | |
dspace.entity.type | Publication | |
unesp.author.lattes | 4638952263502744[7] | |
unesp.author.lattes | 2114367431104728[6] | |
unesp.author.orcid | 0000-0002-2800-392X[1] | |
unesp.author.orcid | 0000-0002-2285-3624[4] | |
unesp.author.orcid | 0000-0001-7236-0847[5] | |
unesp.author.orcid | 0000-0001-9378-9036[7] | |
unesp.author.orcid | 0000-0003-0069-6581[6] | |
unesp.department | Ciências Biológicas - FCLAS | pt |