Logotipo do repositório
 

Publicação:
Discoloration process modeling by neural network

dc.contributor.authorCobra Guimaraes, Oswaldo Luiz [UNESP]
dc.contributor.authordos Reis Chagas, Marta Heloisa [UNESP]
dc.contributor.authorVillela Filho, Darcy Nunes [UNESP]
dc.contributor.authorSiqueira, Adriano Francisco [UNESP]
dc.contributor.authorIzario Filho, Helicio Jose [UNESP]
dc.contributor.authorQueiroz de Aquino, Henrique Otavio [UNESP]
dc.contributor.authorSilva, Messias Borges [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:28:34Z
dc.date.available2014-05-20T13:28:34Z
dc.date.issued2008-07-01
dc.description.abstractThe photo-oxidation of acid orange 52 dye was performed in the presence of H2O2, utilizing UV light, aiming the discoloration process modeling and the process variable influence characterization. The discoloration process was modeled by the use of feedforward neural network. Each sample was characterized by five independent variables (dye concentration, pH, hydrogen peroxide volume, temperature and time of operation) and a dependent variable (absorbance). The neural model has also provided, through Garson Partition coefficients and the Pertubation method, the independent variable influence order determination. The results indicated that the time of operation was the predominant variable and reaction mean temperature was the lesser influent variable. The neural model obtained presented coefficients of correlation on the order 0.98, for sets of trainability, validation and testing, indicating the power of prediction of the model and its character of generalization. (c) 2007 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, Guaratingueta Sate Univ, Sch Engn, São Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Guaratingueta Sate Univ, Sch Engn, São Paulo, Brazil
dc.format.extent71-76
dc.identifierhttp://dx.doi.org/10.1016/j.cej.2007.09.021
dc.identifier.citationChemical Engineering Journal. Lausanne: Elsevier B.V. Sa, v. 140, n. 1-3, p. 71-76, 2008.
dc.identifier.doi10.1016/j.cej.2007.09.021
dc.identifier.issn1385-8947
dc.identifier.lattes9507655803234261
dc.identifier.urihttp://hdl.handle.net/11449/9514
dc.identifier.wosWOS:000257260800009
dc.language.isoeng
dc.publisherElsevier B.V. Sa
dc.relation.ispartofChemical Engineering Journal
dc.relation.ispartofjcr6.735
dc.relation.ispartofsjr1,863
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectneural modelingen
dc.subjectazo dyeen
dc.subjectUV/H2O2en
dc.titleDiscoloration process modeling by neural networken
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V. Sa
dspace.entity.typePublication
unesp.author.lattes9507655803234261
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Guaratinguetápt
unesp.departmentProdução - FEGpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: