Publicação: STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
dc.contributor.author | Pessoa, Claudio [UNESP] | |
dc.contributor.author | Sotomayor, Jorge | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2014-05-20T14:02:56Z | |
dc.date.available | 2014-05-20T14:02:56Z | |
dc.date.issued | 2012-09-22 | |
dc.description.abstract | Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here. | en |
dc.description.affiliation | Univ Estadual Paulista, UNESP IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, Brazil | |
dc.description.affiliation | Univ São Paulo, Inst Matemat & Estat, BR-05508090 São Paulo, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, UNESP IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Pró-Reitoria de Pesquisa da UNESP (PROPe UNESP) | |
dc.description.sponsorshipId | FAPESP: 11/13152-8 | |
dc.format.extent | 15 | |
dc.identifier | http://ejde.math.txstate.edu/ | |
dc.identifier.citation | Electronic Journal of Differential Equations. San Marcos: Texas State Univ, p. 15, 2012. | |
dc.identifier.file | WOS000310454000002.pdf | |
dc.identifier.issn | 1072-6691 | |
dc.identifier.lattes | 3724937886557424 | |
dc.identifier.orcid | 0000-0001-6790-1055 | |
dc.identifier.uri | http://hdl.handle.net/11449/22171 | |
dc.identifier.wos | WOS:000310454000002 | |
dc.language.iso | eng | |
dc.publisher | Texas State Univ | |
dc.relation.ispartof | Electronic Journal of Differential Equations | |
dc.relation.ispartofjcr | 0.944 | |
dc.relation.ispartofsjr | 0,538 | |
dc.rights.accessRights | Acesso aberto | pt |
dc.source | Web of Science | |
dc.subject | Structural stability | en |
dc.subject | piecewise vector fields | en |
dc.subject | compactification. | en |
dc.title | STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS | en |
dc.type | Artigo | pt |
dcterms.license | http://ejde.math.txstate.edu/i2authors.html | |
dcterms.rightsHolder | Texas State Univ | |
dspace.entity.type | Publication | |
unesp.author.lattes | 3724937886557424[1] | |
unesp.author.orcid | 0000-0001-6790-1055[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000310454000002.pdf
- Tamanho:
- 297.87 KB
- Formato:
- Adobe Portable Document Format
Licença do Pacote
1 - 2 de 2
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: