Logotipo do repositório
 

Publicação:
JADE-Based Feature Selection for Non-technical Losses Detection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Capítulo de livro

Direito de acesso

Resumo

Nowadays, non-technical losses, usually caused by thefts and cheats in the energy system distribution, are among the most significant problems an electric power company has to face. Several actions are employed striving to contain or reduce the implications of the conducts mentioned above, especially using automatic identification techniques. However, selecting a proper set of features in a large dataset is essential for successful detection rate, though it does not represent a straightforward task. This paper proposes a modification of JADE, an efficient adaptive differential evolution algorithm, for selecting the most representative features concerning the task of computer-assisted non-technical losses detection. Experiments on general-purpose datasets also evidence the robustness of the proposed approach.

Descrição

Palavras-chave

Adaptive differential evolution, Energy theft detection, Feature selection, JADE

Idioma

Inglês

Como citar

Lecture Notes in Computational Vision and Biomechanics, v. 34, p. 141-156.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação