Repository logo
 

Publication:
Wireless inductive power transfer, oriented modeling and design

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Work presented at event

Access right

Acesso abertoAcesso Aberto

Abstract

This paper proposes a modeling, design methodology and shows the main simulation results to the development of a Wireless Power Transmission (WPT) element, applied to pure Electric Vehicles (EV). The proposed structure is composed of at least two inductors, composing a transmitter and an energy receiver with weak magnetic coupling among them, considering a far-field energy-transfer method. The modeling derived from inductors with cylindrical spiral shape, were analyzed using the Biot-Savart Law and the Third Maxwell Law of the electromagnetism. Through the use of Comsol® software were confirmed the theoretical results from the proposed modeling, obtaining an optimal WPT element for a small EV admitted as a case study. Furthermore, an important contribution presented in this paper is the analysis of arrangements for the inductive elements of power transmitter, presenting its advantages and disadvantages and the best configuration for the case study. Finally, it is informed that the experimental results from an implemented prototype, developed with the proposed methodology, will be presented in a future paper.

Description

Keywords

Inductive Power Transfer, Pure Electric Vehicles, Wireless Power Chargers, Wireless Power Transmission

Language

English

Citation

2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, COBEP/SPEC 2016.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs