Encapsulation of Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) in Albumin and Low-Methoxyl Amidated Pectin Cryogels
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
This study evaluated cryogels from albumin (ALB) and albumin–pectin (ALB:PEC) as carriers for pink pepper (Schinus terebinthifolius Raddi) essential oil. Cryogels were evaluated through infrared spectrophotometry, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. The bioactivity of the cryogels was analyzed by measuring their encapsulation efficiency (EE%), the antimicrobial activity of the encapsulated oil against S. aureus, E. coli, and B. cereus using the agar diffusion method; total phenolic content and antioxidant activity were analyzed by UV-vis spectrophotometry. The EE% varied between 59.61% and 77.41%. The cryogel with only ALB had the highest total phenolic content with 2.802 mg GAE/g, while the cryogel with the 30:70 ratio (ALB:PEC) presented a value of 0.822 mg GAE/g. A higher proportion of PEC resulted in a more significant inhibitory activity against S. aureus, reaching an inhibition zone of 18.67 mm. The cryogels with ALB and 70:30 ratio (ALB:PEC) presented fusion endotherms at 137.16 °C and 134.15 °C, respectively, and semicrystalline structures. The interaction between ALB and PEC increased with their concentration, as evidenced by the decreased intensity of the O-H stretching peak, leading to lower encapsulation efficiency. The cryogels obtained can be considered a suitable matrix for encapsulating pink pepper oil.
Descrição
Palavras-chave
antimicrobial activity, biopolymers, phenolic compounds, polysaccharides, S. aureus
Idioma
Inglês
Citação
Processes, v. 12, n. 8, 2024.




