Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Exploring chalcopyrite (bio)leaching mechanisms under thermophilic conditions

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Chalcopyrite is highly recalcitrant to bioleaching and its dissolution mechanisms are still debatable. In this study, both concentrated and low-grade chalcopyrite were subjected to bioleaching using three microbial consortia under thermophilic conditions. Copper extraction efficiency from concentrated chalcopyrite was assessed in Erlenmeyer flasks and reached nearly 90 % in all consortia, whereas it was limited to 30 % in the abiotic control. Results indicate the prevalence of the chalcocite mechanism, in which chalcopyrite is initially reduced to chalcocite followed by its dissolution. This mechanism was enabled by maintaining the solution potential (ES) lower than the Nernst potential (E1), with microbial activity playing an essential role in lowering ES. The most abundant microorganisms were affiliated with primary producers (such as Cyanobacteria) and chemoorganotrophs (such as Bradyrhizobium), contributing to chalcopyrite dissolution indirectly. Microorganisms kept pH within 1.9–2.1, which led to higher Fe3+ precipitation and lower ES. Copper extraction in low-grade ore reactors was assessed in batch system with closed circulation between a five-liter jacketed packed bed reactor and a five-liter buffer vessel, simulating a (bio)leaching heap. Differently from the observed in concentrated ore, copper extraction efficiency from low-grade chalcopyrite was higher in the abiotic control (60 % compared to 40–47 % under biotic conditions). Based on thermodynamic calculations, a new two-step model for ferrous-promoted chalcopyrite leaching was proposed, whereby chalcopyrite is reduced to bornite followed by its fast oxidation. Understanding copper extraction through different routes is crucial for achieving efficient (bio)leaching of chalcopyrite.

Descrição

Palavras-chave

Bornite, Chalcocite, Extremophilic microorganisms, Low-grade ore, Mineral dissolution, Redox potential

Idioma

Inglês

Citação

Minerals Engineering, v. 204.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Instituto de Química
IQAR
Campus: Araraquara


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso