Layer-by-Layer Films with CoFe2O4Nanocrystals and Graphene Oxide as a Sensitive Interface in Capacitive Field-Effect Devices
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
Sensor devices have proved to be a promising technology for portable microelectronic systems for biomedical and environmental applications. Depending on the target analyte and/or the sensor platform chosen, the study of (nano)materials and their ideal incorporation in the device as a receptor layer have great importance for developing sensing units with enhanced properties and performance. Here, we employed the layer-by-layer (LbL) technique to fabricate nanostructured films as sensing units for detecting H2O2 and heavy metal ions (Cd2+ and Cu2+). The LbL film was deposited on electrolyte-insulator-semiconductor (EIS) field-effect devices, combining CoFe2O4 nanocrystals embedded into polyallylamine hydrochloride (PAH) and graphene oxide (GO) as a PAH-CoFe2O4/GO structure. Scanning electron microscopy revealed a LbL film morphology with high surface area presenting heterogeneous clusters of nanocrystals covered by a homogeneous coating of GO. The electrochemical characterization to monitor the film growth and the sensing properties for detecting H2O2 and Cd2+ and Cu2+ ions was carried out by capacitance-voltage (C/V) and constant-capacitance (ConCap) measurements. The results demonstrated catalytic features in detection experiments for an optimized EIS-LbL sensor containing a 6-bilayer PAH-CoFe2O4/GO LbL film. This sensor system was sensitive for all analytes and exhibited a low limit of detection of ca. 314.3 µM for H2O2 and 0.54 and 0.47 µM for Cd2+ and Cu2+ ions, respectively. These findings prove the relevance of incorporating nanostructured films as a receptor layer to enhance sensing properties and may envisage a proof-of-concept field-effect sensor system for environmental applications.
Descrição
Palavras-chave
CoFe2O4nanocrystals, EIS sensors, field-effect devices, graphene oxide, layer-by-layer technique, nanostructured films
Idioma
Inglês
Citação
ACS Applied Nano Materials.


