Understanding the Energy Landscape of Intrinsically Disordered Protein Ensembles
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
A substantial portion of various organisms’ proteomes comprises intrinsically disordered proteins (IDPs) that lack a defined three-dimensional structure. These IDPs exhibit a diverse array of conformations, displaying remarkable spatiotemporal heterogeneity and exceptional conformational flexibility. Characterizing the structure or structural ensemble of IDPs presents significant conceptual and methodological challenges owing to the absence of a well-defined native structure. While databases such as the Protein Ensemble Database (PED) provide IDP ensembles obtained through a combination of experimental data and molecular modeling, the absence of reaction coordinates poses challenges in comprehensively understanding pertinent aspects of the system. In this study, we leverage the energy landscape visualization method (JCTC, 6482, 2019) to scrutinize four IDP ensembles sourced from PED. ELViM, a methodology that circumvents the need for a priori reaction coordinates, aids in analyzing the ensembles. The specific IDP ensembles investigated are as follows: two fragments of nucleoporin (NUL: 884-993 and NUS: 1313-1390), yeast sic 1 N-terminal (1-90), and the N-terminal SH3 domain of Drk (1-59). Utilizing ELViM enables the comprehensive validation of ensembles, facilitating the detection of potential inconsistencies in the sampling process. Additionally, it allows for identifying and characterizing the most prevalent conformations within an ensemble. Moreover, ELViM facilitates the comparative analysis of ensembles obtained under diverse conditions, thereby providing a powerful tool for investigating the functional mechanisms of IDPs.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Journal of Chemical Information and Modeling, v. 64, n. 10, p. 4149-4157, 2024.




