Logotipo do repositório
 

Publicação:
Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm

dc.contributor.authorTosta, Thaina A. A.
dc.contributor.authorFaria, Paulo Rogerio de
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorNascimento, Marcelo Zanchetta do
dc.contributor.authorSim, K.
dc.contributor.authorKaufmann, P.
dc.contributor.authorAscheid, G.
dc.contributor.authorBacardit, J.
dc.contributor.authorCagnoni, S.
dc.contributor.authorCotta, C.
dc.contributor.authorDAndreagiovanni, F.
dc.contributor.authorDivina, F.
dc.contributor.authorEsparciaAlcazar, A. L.
dc.contributor.authorDeVega, F. F.
dc.contributor.authorGlette, K.
dc.contributor.authorHidalgo, J. I.
dc.contributor.authorHubert, J.
dc.contributor.authorIacca, G.
dc.contributor.authorKramer, O.
dc.contributor.authorMavrovouniotis, M.
dc.contributor.authorGarcia, AMM
dc.contributor.authorNguyen, T. T.
dc.contributor.authorSchaefer, R.
dc.contributor.authorSilva, S.
dc.contributor.authorTonda, A.
dc.contributor.authorUrquhart, N.
dc.contributor.authorZhang, M.
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:51:51Z
dc.date.available2018-11-26T17:51:51Z
dc.date.issued2018-01-01
dc.description.abstractFor disease monitoring, grade definition and treatments orientation, specialists analyze tissue samples to identify structures of different types of cancer. However, manual analysis is a complex task due to its subjectivity. To help specialists in the identification of regions of interest, segmentation methods are used on histological images obtained by the digitization of tissue samples. Besides, features extracted from these specific regions allow for more objective diagnoses by using classification techniques. In this paper, fitness functions are analyzed for unsupervised segmentation and classification of chronic lymphocytic leukemia and follicular lymphoma images by the identification of their neoplastic cellular nuclei through the genetic algorithm. Qualitative and quantitative analyses allowed the definition of the Renyi entropy as the most adequate for this application. Images classification has reached results of 98.14% through accuracy metric by using this fitness function.en
dc.description.affiliationFed Univ ABC, Ctr Math Comp & Cognit, Santo Andre, Brazil
dc.description.affiliationUniv Fed Uberlandia, Inst Biomed Sci, Dept Histol & Morphol, Uberlandia, MG, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, Brazil
dc.description.affiliationUniv Fed Uberlandia, Fac Comp Sci, Uberlandia, MG, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdCAPES: 1575210
dc.description.sponsorshipIdFAPEMIG: TEC - APQ-02885-15
dc.format.extent47-62
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-77538-8_4
dc.identifier.citationApplications Of Evolutionary Computation, Evoapplications 2018. Cham: Springer International Publishing Ag, v. 10784, p. 47-62, 2018.
dc.identifier.doi10.1007/978-3-319-77538-8_4
dc.identifier.fileWOS000433244800004.pdf
dc.identifier.issn0302-9743
dc.identifier.lattes2139053814879312
dc.identifier.urihttp://hdl.handle.net/11449/164253
dc.identifier.wosWOS:000433244800004
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofApplications Of Evolutionary Computation, Evoapplications 2018
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectNuclear segmentation
dc.subjectLymphoma histological images Genetic algorithm
dc.subjectFitness function evaluation
dc.titleFitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithmen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.lattes2139053814879312
unesp.author.orcid0000-0001-8580-7054[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000433244800004.pdf
Tamanho:
1.87 MB
Formato:
Adobe Portable Document Format
Descrição: