Logotipo do repositório
 

Publicação:
Localização de danos em estruturas isotrópicas com a utilização de aprendizado de máquina

dc.contributor.advisorLopes Júnior, Vicente [UNESP]
dc.contributor.advisorFernandes, Márcia Aparecida [UNESP]
dc.contributor.authorOliveira, Daniela Cabral de [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2017-08-03T16:52:18Z
dc.date.available2017-08-03T16:52:18Z
dc.date.issued2017-06-28
dc.description.abstractEste trabalho introduz uma nova metodologia de Monitoramento da Integridade de Estruturas (SHM, do inglês Structural Health Monitoring) utilizando algoritmos de aprendizado de máquina não-supervisionado para localização e detecção de dano. A abordagem foi testada em material isotrópico (placa de alumínio). Os dados experimentais foram cedidos por Rosa (2016). O banco de dados disponibilizado é abrangente e inclui medidas em diversas situações. Os transdutores piezelétricos foram colados na placa de alumínio com dimensões de 500 x 500 x 2mm, que atuam como sensores e atuadores ao mesmo tempo. Para manipulação dos dados foram analisados os sinais definindo o primeiro pacote do sinal (first packet), considerando apenas o intervalo de tempo igual ao tempo da força de excitação. Neste caso, na há interferência dos sinais refletidos nas bordas da estrutura. Os sinais são obtidos na situação sem dano (baseline) e, posteriormente nas diversas situações de dano. Como método de avaliação do quanto o dano interfere em cada caminho, foram implementadas as seguintes métricas: pico máximo, valor médio quadrático (RMSD), correlação entre os sinais, normas H2 e H∞ entre os sinais baseline e sinais com dano. Logo após o cálculo das métricas para as diversas situações de dano, foi implementado o algoritmo de aprendizado de máquina não-supervisionado K-Means no matlab e também testado no toolbox Weka. No algoritmo K-Means há a necessidade da pré-determinação do número de clusters e isto pode dificultar sua utilização nas situações reais. Então, fez se necessário a implementação de um algoritmo de aprendizado de máquina não-supervisionado que utiliza propagação de afinidades, onde a determinação do número de clusters é definida pela matriz de similaridades. O algoritmo de propagação de afinidades foi desenvolvido para todas as métricas separadamente para cada dano.pt
dc.description.abstractThis paper introduces a new Structural Health Monitoring (SHM) methodology using unsupervised machine learning algorithms for locating and detecting damage. The approach was tested with isotropic material in an aluminum plate. Experimental data were provided by Rosa (2016). This provided database is open and includes measures in a variety of situations. The piezoelectric transducers were bonded to the aluminum plate with dimensions 500 x 500 x 2mm, and act as sensors and actuators simultaneously. In order to manipulate the data, signals defining the first packet were analyzed. It considers strictly the time interval equal to excitation force length. In this case, there is no interference of reflected signals in the structure boundaries. Signals are gathered at undamaged situation (baseline) and at several damage situations. As an evaluating method of how damage interferes in each path, it was implemented the following metrics: maximum peak, root-mean-square deviation (RMSD), correlation between signals, H2 and H∞ norms regarding baseline and damaged signals. The metrics were computed for numerous damage situations. The data were evaluated in an unsupervised K-Means machine learning algorithm implemented in matlab and also tested in Weka toolbox. However, the K-Means algorithm requires the specification of the number of clusters and it is a problem for practical applications. Therefore, an implementation of an unsupervised machine learning algorithm, which uses affinity propagation was made. In this case, the determination of the number of clusters is defined by the data similarity matrix. The affinity propagation algorithm was developed for all metrics separately for each damage.en
dc.identifier.aleph000889897
dc.identifier.capes33004099082P2
dc.identifier.urihttp://hdl.handle.net/11449/151259
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectSHMpt
dc.subjectAprendizado de máquina não-supervisionadopt
dc.subjectAlgoritmo K-Meanspt
dc.subjectAlgoritmo propagação de afinidadept
dc.subjectUnsupervised machine learningen
dc.subjectK-Means algorithmen
dc.subjectAffinity propagation algorithmen
dc.titleLocalização de danos em estruturas isotrópicas com a utilização de aprendizado de máquinapt
dc.title.alternativeLocalization of damages in isotropic strutures with the use of machine learningen
dc.typeDissertação de mestrado
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.embargoOnlinept
unesp.graduateProgramEngenharia Mecânica - FEISpt
unesp.knowledgeAreaOutrapt
unesp.researchAreaMonitoramento e Diagnose de Falhas de Máquinas e Equipamentos

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
oliveira_dc_me_ilha.pdf
Tamanho:
3.88 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
3 KB
Formato:
Item-specific license agreed upon to submission
Descrição: