Monotonicity of zeros of derivatives of Bessel functions
| dc.contributor.author | Dimitrov, Dimitar K. [UNESP] | |
| dc.contributor.author | Lun, Yen Chi [UNESP] | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T19:12:57Z | |
| dc.date.issued | 2025-01-01 | |
| dc.description.abstract | Recently Baricz et al., 2018 and Baricz and Singh 2018 gave two different proofs of the fact that the zeros of the nth derivative of the Bessel function of the first kind Jν(x) are all real when ν>n−1. We provide a third alternative proof. The authors of Baricz et al., 2018 conjectured that, for every n∈N, the positive zeros of Jν(n)(x) are increasing functions of the parameter ν, for ν∈(n−1,∞). We provide two apparently distinct proofs of the conjecture. | en |
| dc.description.affiliation | Departamento de Matemática IBILCE Universidade Estadual Paulista, SP | |
| dc.description.affiliationUnesp | Departamento de Matemática IBILCE Universidade Estadual Paulista, SP | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | CNPq: 309955/2021-1 | |
| dc.identifier | http://dx.doi.org/10.1016/j.jat.2024.106102 | |
| dc.identifier.citation | Journal of Approximation Theory, v. 305. | |
| dc.identifier.doi | 10.1016/j.jat.2024.106102 | |
| dc.identifier.issn | 1096-0430 | |
| dc.identifier.issn | 0021-9045 | |
| dc.identifier.scopus | 2-s2.0-85205946205 | |
| dc.identifier.uri | https://hdl.handle.net/11449/301871 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Journal of Approximation Theory | |
| dc.source | Scopus | |
| dc.subject | Jensen polynomials | |
| dc.subject | Laguerre's theorem | |
| dc.subject | Laguerre–Pólya class | |
| dc.subject | Monotonicity of zeros | |
| dc.subject | Zeros of derivatives of the Bessel function | |
| dc.title | Monotonicity of zeros of derivatives of Bessel functions | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
