Logo do repositório

The Extended H∞ Particle Filter for Attitude Estimation Applied to Remote Sensing Satellite CBERS-4

dc.contributor.authorSilva, William Reis
dc.contributor.authorGarcia, Roberta Veloso
dc.contributor.authorPardal, Paula C. P. M.
dc.contributor.authorKuga, Hélio Koiti
dc.contributor.authorZanardi, Maria Cecília F. P. S. [UNESP]
dc.contributor.authorBaroni, Leandro
dc.contributor.institutionSetor Leste (Gama)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionPACT
dc.contributor.institutionNational Institute for Space Research (INPE)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.date.accessioned2025-04-29T18:05:19Z
dc.date.issued2023-08-01
dc.description.abstractAn extension of the linear (Formula presented.) filter, presented here as the extended (Formula presented.) particle filter (E (Formula presented.) PF), is used in this work for attitude estimation, which presents a process and measurement model with nonlinear functions. The simulations implemented use orbit and attitude data from CBERS-4 (China–Brazil Earth Resources Satellite-4), making use of the robustness characteristics of the (Formula presented.) filter. The CBERS-4 is the fifth satellite of an advantageous international scientific interaction between Brazil and China for the development of remote sensing satellites used for strategic application in monitoring water resources and controlling deforestation in the Legal Amazon. In the extended (Formula presented.) particle filter (E (Formula presented.) PF) the nature of the system, composed of dynamics and noises, seeks to degrade the state estimate. The E (Formula presented.) PF deals with this by aiming for robustness, using a performance parameter in its cost function, in addition to presenting an advantageous feature of using a reduced number of particles for state estimation. The justification for the application of this method is because the non-Gaussian uncertainties that appear in the attitude sensors impair the estimation process and the E (Formula presented.) PF minimizes in signal estimation the worst effects of disturbance signals without a priori knowledge of them, as shown in the results, in addition to presenting good precision within the prescribed requirements, with 100 particles representing a processing time 2.09 times less than the PF with 500 particles.en
dc.description.affiliationUniversity of Brasilia (UnB) Área Especial de Indústria Projeção A Setor Leste (Gama), Gama Campus (FGA), DF
dc.description.affiliationLorena School of Engineering (EEL) University of São Paulo (USP), Estrada Municipal do Campinho, S/N. Ponte Nova, SP
dc.description.affiliationCollaborative Laboratory (CoLAB) Center of Engineering and Product Development (CEiiA) PACT, Rua Luís Adelino Fonseca, 1
dc.description.affiliationSpace Mechanics and Control Division (DMC) National Institute for Space Research (INPE), Av. dos Astronautas, 1758, Jardim da Granja, SP
dc.description.affiliationSão Paulo State University (UNESP), Campus Guaratinguetá (FEG), Av. Dr. Ariberto Pereira da Cunha, 333, Pedregulho, SP
dc.description.affiliationEngineering Modeling and Applied Social Sciences Center (CECS) Federal University of ABC (UFABC), Av. dos Estados, 5001, Bangú, SP
dc.description.affiliationUnespSão Paulo State University (UNESP), Campus Guaratinguetá (FEG), Av. Dr. Ariberto Pereira da Cunha, 333, Pedregulho, SP
dc.identifierhttp://dx.doi.org/10.3390/rs15164052
dc.identifier.citationRemote Sensing, v. 15, n. 16, 2023.
dc.identifier.doi10.3390/rs15164052
dc.identifier.issn2072-4292
dc.identifier.scopus2-s2.0-85168778641
dc.identifier.urihttps://hdl.handle.net/11449/297024
dc.language.isoeng
dc.relation.ispartofRemote Sensing
dc.sourceScopus
dc.subjectattitude estimation
dc.subjectChina–Brazil Earth Resources Satellite
dc.subjectextended H∞ particle filter
dc.subjectnonlinear state estimation
dc.subjectparticle filter
dc.titleThe Extended H∞ Particle Filter for Attitude Estimation Applied to Remote Sensing Satellite CBERS-4en
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa4071986-4355-47c3-a5a3-bd4d1a966e4f
relation.isOrgUnitOfPublication.latestForDiscoverya4071986-4355-47c3-a5a3-bd4d1a966e4f
unesp.author.orcid0000-0002-4843-0267[1]
unesp.author.orcid0000-0002-0633-6272[2]
unesp.author.orcid0000-0003-1046-6587[3]
unesp.author.orcid0000-0002-0259-0724[4]
unesp.author.orcid0000-0001-9940-2146[5]
unesp.author.orcid0000-0002-1078-7201[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos