Publicação:
Chlorinated organophosphate esters in Irish waste foams and fabrics: Concentrations, preliminary assessment of temporal trends and evaluation of the impact of a concentration limit value

Nenhuma Miniatura disponível

Data

2023-02-10

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Concentrations of the chlorinated organophosphate esters (Cl-OPEs): tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were measured in 273 waste synthetic foam and fabric articles collected in Ireland between 2019 and 2020. Articles examined comprised: polystyrene building insulation foam, as well as foam fillings and fabric coverings from furniture, mattresses, end-of-life vehicles, curtains, and carpets. Cl-OPEs were also measured in 156 samples from the same categories (except for building insulation foam) collected in 2015–16. Concentrations of TCIPP and TDCIPP in most samples exceeded those of TCEP; with those of TCIPP and TDCIPP generally and for some waste categories significantly (p < 0.05) higher in samples collected in 2019–20. Given potential future restrictions on use of these Cl-OPEs, we identified articles containing concentrations that exceeded 1000 mg/kg, in line with a similar limit that at the time of sample collection existed for some brominated flame retardants within the European Union. In 2019–20, 82 articles contained at least one Cl-OPE above 1000 mg/kg, with at least one article exceeding this concentration in each waste category examined. By comparison, only 28 samples collected in 2015–16, contained at least one Cl-OPE >1000 mg/kg, and articles exceeding this concentration were restricted to furniture and mattress foam, along with foams and fabrics from end-of-life vehicles. In the event of the introduction of such a limit on Cl-OPE concentrations in waste, it will result in 7200 t/year of such waste (24 % of the total) being rendered unrecyclable, while removing 98 % of the estimated ∼147,000 kg/year of Cl-OPEs from the recycling stream.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Science of the Total Environment, v. 859.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação