Publicação: Zero-Hopf bifurcation in a Chua system
dc.contributor.author | Euzébio, Rodrigo D. [UNESP] | |
dc.contributor.author | Llibre, Jaume | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universitat Autònoma de Barcelona | |
dc.date.accessioned | 2018-12-11T17:10:16Z | |
dc.date.available | 2018-12-11T17:10:16Z | |
dc.date.issued | 2017-10-01 | |
dc.description.abstract | A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are ±ωi≠0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously. | en |
dc.description.affiliation | Departament de Matemática IBILCE UNESP, Rua Cristovao Colombo 2265, Jardim Nazareth, CEP 15.054-00 | |
dc.description.affiliation | Departament de Matemàtiques Universitat Autònoma de Barcelona, 08193 Bellaterra | |
dc.description.affiliationUnesp | Departament de Matemática IBILCE UNESP, Rua Cristovao Colombo 2265, Jardim Nazareth, CEP 15.054-00 | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | CAPES: 88881 | |
dc.format.extent | 31-40 | |
dc.identifier | http://dx.doi.org/10.1016/j.nonrwa.2017.02.002 | |
dc.identifier.citation | Nonlinear Analysis: Real World Applications, v. 37, p. 31-40. | |
dc.identifier.doi | 10.1016/j.nonrwa.2017.02.002 | |
dc.identifier.file | 2-s2.0-85014312661.pdf | |
dc.identifier.issn | 1468-1218 | |
dc.identifier.scopus | 2-s2.0-85014312661 | |
dc.identifier.uri | http://hdl.handle.net/11449/174285 | |
dc.language.iso | eng | |
dc.relation.ispartof | Nonlinear Analysis: Real World Applications | |
dc.relation.ispartofsjr | 1,627 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Averaging theory | |
dc.subject | Chua system | |
dc.subject | Periodic orbit | |
dc.subject | Zero Hopf bifurcation | |
dc.title | Zero-Hopf bifurcation in a Chua system | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-85014312661.pdf
- Tamanho:
- 560.6 KB
- Formato:
- Adobe Portable Document Format
- Descrição: