Logotipo do repositório
 

Publicação:
Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)

dc.contributor.authorGarcia, Dorival Pinheiro [UNESP]
dc.contributor.authorCaraschi, José Cláudio [UNESP]
dc.contributor.authorVentorim, Gustavo [UNESP]
dc.contributor.authorVieira, Fábio Henrique Antunes [UNESP]
dc.contributor.authorde Paula Protásio, Thiago
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFederal Rural University of Amazon (UFRA)
dc.date.accessioned2019-10-06T17:04:17Z
dc.date.available2019-10-06T17:04:17Z
dc.date.issued2019-08-01
dc.description.abstractMultivariate statistics can be a powerful tool in the assessment of energy properties of lignocellulosic materials and it is fundamental to estimate the theoretical, technical and economic potentials of these biomasses for bioenergy production. In this research, it was used to select the most favorable vegetable biomass for the production of biofuel pellets, through two techniques: Hierarchical Clustering Agglomerative and Principal Components. Six types of biomasses (pinus wood, eucalyptus wood, sugarcane bagasse, bamboo, sorghum, and elephant grass) and three blends were used. The immediate, elemental and thermochemical analyzes provided 16 variables of each of the 9 types of pellets. The dendrogram highlighted the group of forest biomass as the most suitable for the production of pellets and the principal component factors produced two bioenergetic indicators; one of general performance and other of combustibility. The forest biomass pellets was highlighted as potential for the production of biofuel pellets because they have energy properties with low levels of ash (0.54%) and nitrogen (0.83%), associated with high fixed carbon content (20.89%) and higher heating value (20.71 MJ kg−1), as well a higher energy density (13.95 GJ m−3). The multivariate analysis was efficient and can be used to classify lignocellulosic materials.en
dc.description.affiliationSão Paulo State University (UNESP), Ariberto Per Cunha, 333
dc.description.affiliationSão Paulo State University (UNESP), Geraldo Alckmin, 519
dc.description.affiliationFederal Rural University of Amazon (UFRA), 275, Km 13
dc.description.affiliationUnespSão Paulo State University (UNESP), Ariberto Per Cunha, 333
dc.description.affiliationUnespSão Paulo State University (UNESP), Geraldo Alckmin, 519
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent796-805
dc.identifierhttp://dx.doi.org/10.1016/j.renene.2019.02.103
dc.identifier.citationRenewable Energy, v. 139, p. 796-805.
dc.identifier.doi10.1016/j.renene.2019.02.103
dc.identifier.issn1879-0682
dc.identifier.issn0960-1481
dc.identifier.scopus2-s2.0-85062348672
dc.identifier.urihttp://hdl.handle.net/11449/190160
dc.language.isoeng
dc.relation.ispartofRenewable Energy
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAgro-pellets
dc.subjectChemical composition
dc.subjectEnergy crops
dc.subjectFuel properties
dc.subjectRenewable energy
dc.subjectWood pellets
dc.titleAssessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)en
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciências e Engenharia, Itapevapt
unesp.departmentEngenharia Industrial Madeireira - ICEpt

Arquivos