Publicação: Photoluminescence and Photocatalytic Properties of Ag3PO4 Microcrystals: An Experimental and Theoretical Investigation
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
The structural, morphological, and optical properties of Ag3PO4 microcrystals were systematically characterized by using a combination of theoretical calculations and experimental techniques. These microcrystals were synthesized by the microwave-assisted hydrothermal (MAH) method. XRD, Rietveld refinements, and FTIR spectroscopy were employed to carry out a structural analysis; the morphologies of the microcrystals were examined by FEG-SEM. First-principles computational studies were used to calculate the geometries of bulk Ag3PO4 and its (010), (100), (001), (110), (101), (011), and (111) surfaces. A continuous decrease in the energy of the (100) surface led to a good agreement between the experimental and theoretical morphologies. Optical properties were investigated by UV/Vis spectroscopy and photoluminescence (PL) measurements, which revealed a maximum PL emission at λ=444 nm. The MAH-synthesized sample exhibited good activity for the photocatalytic degradation of methyl orange dye under visible irradiation. The photocatalytic activity and PL behavior were correlated with the observed morphology.
Descrição
Palavras-chave
crystal growth, density functional calculations, photochemistry, silver, surface analysis
Idioma
Inglês
Como citar
ChemPlusChem, v. 81, n. 2, p. 202-212, 2016.