Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Deep Texture Feature Aggregation on Leaf Microscopy Images for Brazilian Plant Species Recognition

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

In this work, we explore various computer vision techniques, with a focus on texture recognition approaches, for the task of plant species detection. We particularly emphasize the study of a challenging dataset consisting of 50 Brazilian plant species' leaf midrib cross-sections using microscope images. The research focuses on a recent method named Random Encoding of Aggregated Deep Activation Maps (RADAM) that leverages deep features from pre-trained Convolutional Neural Networks (CNNs) for improved plant species identification. This method demonstrates significant advancement over traditional texture analysis and deep learning approaches, showcasing the potential of combining deep feature engineering with texture analysis for accurate plant species recognition.

Descrição

Palavras-chave

Computer Vision, Deep Learning, Plant Sciences, Texture Analysis

Idioma

Inglês

Citação

ACM International Conference Proceeding Series, p. 209-213.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso