Deep Texture Feature Aggregation on Leaf Microscopy Images for Brazilian Plant Species Recognition
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
In this work, we explore various computer vision techniques, with a focus on texture recognition approaches, for the task of plant species detection. We particularly emphasize the study of a challenging dataset consisting of 50 Brazilian plant species' leaf midrib cross-sections using microscope images. The research focuses on a recent method named Random Encoding of Aggregated Deep Activation Maps (RADAM) that leverages deep features from pre-trained Convolutional Neural Networks (CNNs) for improved plant species identification. This method demonstrates significant advancement over traditional texture analysis and deep learning approaches, showcasing the potential of combining deep feature engineering with texture analysis for accurate plant species recognition.
Descrição
Palavras-chave
Computer Vision, Deep Learning, Plant Sciences, Texture Analysis
Idioma
Inglês
Citação
ACM International Conference Proceeding Series, p. 209-213.




