Logo do repositório

Fractional calculus, zeta functions and Shannon entropy

dc.contributor.authorGuariglia, Emanuel [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:30:57Z
dc.date.available2021-06-25T10:30:57Z
dc.date.issued2021-01-01
dc.description.abstractThis paper deals with the fractional calculus of zeta functions. In particular, the study is focused on the Hurwitz ζ \zeta function. All the results are based on the complex generalization of the Grünwald-Letnikov fractional derivative. We state and prove the functional equation together with an integral representation by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy.en
dc.description.affiliationInstitute of Biosciences Letters and Exact Sciences São Paulo State University (UNESP), Rua Cristóvão Colombo 2265
dc.description.affiliationUnespInstitute of Biosciences Letters and Exact Sciences São Paulo State University (UNESP), Rua Cristóvão Colombo 2265
dc.format.extent87-100
dc.identifierhttp://dx.doi.org/10.1515/math-2021-0010
dc.identifier.citationOpen Mathematics, v. 19, n. 1, p. 87-100, 2021.
dc.identifier.doi10.1515/math-2021-0010
dc.identifier.issn2391-5455
dc.identifier.scopus2-s2.0-85106314924
dc.identifier.urihttp://hdl.handle.net/11449/206373
dc.language.isoeng
dc.relation.ispartofOpen Mathematics
dc.sourceScopus
dc.subjectBernoulli numbers
dc.subjectfractional derivative
dc.subjectfunctional equation
dc.subjectHurwitz ζ function
dc.subjectShannon entropy
dc.titleFractional calculus, zeta functions and Shannon entropyen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos