Logotipo do repositório
 

Publicação:
Unsupervised segmentation method for cuboidal cell nuclei in histological prostate images based on minimum cross entropy

dc.contributor.authorDe Oliveira, Domingos Lucas Latorre
dc.contributor.authorDo Nascimento, Marcelo Zanchetta
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorDe Godoy, Moacir Fernandes
dc.contributor.authorDe Arruda, Pedro Francisco Ferraz
dc.contributor.authorDe Santi Neto, Dalisio
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFaculdade de Medicina de São José do Rio Preto (FAMERP)
dc.contributor.institutionRegional Medical Faculty Foundation (FUNFARME)
dc.date.accessioned2014-05-27T11:30:09Z
dc.date.available2014-05-27T11:30:09Z
dc.date.issued2013-08-12
dc.description.abstractThis paper presents a novel segmentation method for cuboidal cell nuclei in images of prostate tissue stained with hematoxylin and eosin. The proposed method allows segmenting normal, hyperplastic and cancerous prostate images in three steps: pre-processing, segmentation of cuboidal cell nuclei and post-processing. The pre-processing step consists of applying contrast stretching to the red (R) channel to highlight the contrast of cuboidal cell nuclei. The aim of the second step is to apply global thresholding based on minimum cross entropy to generate a binary image with candidate regions for cuboidal cell nuclei. In the post-processing step, false positives are removed using the connected component method. The proposed segmentation method was applied to an image bank with 105 samples and measures of sensitivity, specificity and accuracy were compared with those provided by other segmentation approaches available in the specialized literature. The results are promising and demonstrate that the proposed method allows the segmentation of cuboidal cell nuclei with a mean accuracy of 97%. © 2013 Elsevier Ltd. All rights reserved.en
dc.description.affiliationCenter of Mathematics Computing and Cognition Federal University of ABC (UFABC), Santo André, SP
dc.description.affiliationFaculty of Computing (FACOM) Federal University of Uberlândia (UFU), Uberlândia, MG
dc.description.affiliationInstitute of Biosciences Letters and Science Department of Computer Science and Statistics São Paulo State University (UNESP), São José do Rio Preto, SP
dc.description.affiliationInterdisciplinary Center for the Study of Chaos and Complexity (NUTTECC) Faculty of Medicine of São José Do Rio Preto (FAMERP), São José do Rio Preto, SP
dc.description.affiliationSurgery Department of Renal Transplantation Regional Medical Faculty Foundation (FUNFARME), São José do Rio Preto, SP
dc.description.affiliationDepartment of Pathology of Base Hospital Regional Medical Faculty Foundation (FUNFARME), São José do Rio Preto, SP
dc.description.affiliationUnespInstitute of Biosciences Letters and Science Department of Computer Science and Statistics São Paulo State University (UNESP), São José do Rio Preto, SP
dc.format.extent7331-7340
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2013.06.079
dc.identifier.citationExpert Systems with Applications, v. 40, n. 18, p. 7331-7340, 2013.
dc.identifier.doi10.1016/j.eswa.2013.06.079
dc.identifier.issn0957-4174
dc.identifier.lattes2139053814879312
dc.identifier.scopus2-s2.0-84881181456
dc.identifier.urihttp://hdl.handle.net/11449/76252
dc.identifier.wosWOS:000324663000018
dc.language.isoeng
dc.relation.ispartofExpert Systems with Applications
dc.relation.ispartofjcr3.768
dc.relation.ispartofsjr1,271
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectMinimum cross entropy
dc.subjectProstate cancer
dc.subjectSegmentation of cuboidal cells
dc.subjectSegmentation of nuclei
dc.subjectConnected component
dc.subjectContrast stretching
dc.subjectGlobal thresholding
dc.subjectPre-processing step
dc.subjectProstate cancers
dc.subjectSegmentation methods
dc.subjectUnsupervised segmentation method
dc.subjectEntropy
dc.subjectImage segmentation
dc.titleUnsupervised segmentation method for cuboidal cell nuclei in histological prostate images based on minimum cross entropyen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dspace.entity.typePublication
unesp.author.lattes2139053814879312
unesp.author.orcid0000-0001-8580-7054[3]
unesp.author.orcid0000-0001-8390-0933[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos