Publication: Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation
Loading...
Date
Advisor
Coadvisor
Graduate program
Undergraduate course
Journal Title
Journal ISSN
Volume Title
Publisher
Type
Article
Access right
Abstract
We consider piecewise smooth vector fields (PSVF) defined in open sets M⊆ Rn with switching manifold being a smooth surface Σ. We assume that M\ Σ contains exactly two connected regions, namely Σ + and Σ -. Then, the PSVF are given by pairs X= (X+, X-) , with X= X+ in Σ + and X= X- in Σ -. A regularization of X is a 1-parameter family of smooth vector fields Xε, ε> 0 , satisfying that Xε converges pointwise to X on M\ Σ , when ε→ 0. Inspired by the Fenichel Theory, the sliding and sewing dynamics on the discontinuity locus Σ can be defined as some sort of limit of the dynamics of a nearby smooth regularization Xε. While the linear regularization requires that for every ε> 0 the regularized field Xε is in the convex combination of X+ and X-, the nonlinear regularization requires only that Xε is in a continuous combination of X+ and X-. We prove that, for both cases, the sliding dynamics on Σ is determined by the reduced dynamics on the critical manifold of a singular perturbation problem. We apply our techniques in the description of the nonlinear regularization of normal forms of PSVF in R2 and in R3.
Description
Keywords
Non-smooth vector fields, Regularization, Singular perturbation, Sliding vector fields, Vector fields
Language
English
Citation
Differential Equations and Dynamical Systems.