Logo do repositório

A data-driven approach for neonatal mortality rate forecasting

dc.contributor.authorRodriguez, Elen [UNESP]
dc.contributor.authorRodriguez, Elias [UNESP]
dc.contributor.authorNascimento, Luiz [UNESP]
dc.contributor.authorSilva, Aneirson da [UNESP]
dc.contributor.authorMarins, Fernando [UNESP]
dc.contributor.authorShakhovska, N.
dc.contributor.authorChretien, S.
dc.contributor.authorIzonin, I
dc.contributor.authorCampos, J.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniv Taubate UNITAU
dc.date.accessioned2025-04-29T18:48:54Z
dc.date.issued2022-01-01
dc.description.abstractNeonatal mortality is an important public health problem that reflects the development of a country, as well as the quality of care provided to the newborn. This article presents the development and comparison of classical models and machine learning models for time series forecasting, applied to the forecast of monthly neonatal mortality rates in the metropolitan region of Paraiba River Valley and North Coast - Sao Paulo State - Brazil. The database used comprised the monthly rates from January 2000 to December 2020. The models compared were Seasonal Autoregressive Integrated Moving Average, random forest, support vector machine (SVM), light gradient boosting machine, categorical boosting (CatBoost), gradient boosting (GB), extreme gradient boosting, and multilayer perceptron. The best parameters and hyperparameters of the models tested were adjusted through an exhaustive computational search. The results showed that the CatBoost, SVM, and GB models presented the lowest values in the error metrics evaluated, and the SVM model presented better precision. The forecasts of the SVM model showed a behavior very close to the actual rates, which was confirmed by the application of the paired t-test. These results corroborate that time series forecasting models can significantly contribute as a decision support tool for public health problems.en
dc.description.affiliationSao Paulo State Univ UNESP, Ave Dr Ariberto Pereira Cunha 33, BR-12516410 Guaratingueta, SP, Brazil
dc.description.affiliationUniv Taubate UNITAU, Estr Municipal Dr Jose Luiz Cembranelli 5-000, BR-1208101 Taubate, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Ave Dr Ariberto Pereira Cunha 33, BR-12516410 Guaratingueta, SP, Brazil
dc.description.sponsorshipCoordination for the Improvement of Higher Education Personnel
dc.description.sponsorshipNational Council for Scientific and Technological Development
dc.description.sponsorshipIdCoordination for the Improvement of Higher Education Personnel: CAPES - 001
dc.description.sponsorshipIdNational Council for Scientific and Technological Development: CNPq -304197/2021-1
dc.description.sponsorshipIdNational Council for Scientific and Technological Development: CNPq 303090/2021-9
dc.format.extent13
dc.identifier.citation5th International Conference On Informatics & Data-driven Medicine, Iddm 2022. Aachen: Rwth Aachen, v. 3302, 13 p., 2022.
dc.identifier.issn1613-0073
dc.identifier.urihttps://hdl.handle.net/11449/300196
dc.identifier.wosWOS:001237870400009
dc.language.isoeng
dc.publisherRwth Aachen
dc.relation.ispartof5th International Conference On Informatics & Data-driven Medicine, Iddm 2022
dc.sourceWeb of Science
dc.subjectNeonatal mortality
dc.subjecttime series analysis
dc.subjectforecasting
dc.subjectdata-driven models
dc.subjectmachine learning
dc.titleA data-driven approach for neonatal mortality rate forecastingen
dc.typeTrabalho apresentado em eventopt
dcterms.rightsHolderRwth Aachen
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa4071986-4355-47c3-a5a3-bd4d1a966e4f
relation.isOrgUnitOfPublication.latestForDiscoverya4071986-4355-47c3-a5a3-bd4d1a966e4f
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos