Publication:
Near-optimal heuristics for just-in-time jobs maximization in flow shop scheduling

Loading...
Thumbnail Image

Date

2018-04-01

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Article

Access right

Acesso abertoAcesso Aberto

Abstract

The number of just-in-time jobs maximization in a permutation flow shop scheduling problem is considered. A mixed integer linear programming model to represent the problem as well as solution approaches based on enumeration and constructive heuristics were proposed and computationally implemented. Instances with up to 10 jobs and five machines are solved by the mathematical model in an acceptable running time (3.3 min on average) while the enumeration method consumes, on average, 1.5 s. The 10 constructive heuristics proposed show they are practical especially for large-scale instances (up to 100 jobs and 20 machines), with very good-quality results and efficient running times. The best two heuristics obtain near-optimal solutions, with only 0.6% and 0.8% average relative deviations. They prove to be better than adaptations of the NEH heuristic (well-known for providing very good solutions for makespan minimization in flow shop) for the considered problem.

Description

Language

English

Citation

Algorithms, v. 11, n. 4, 2018.

Related itens

Units

Departments

Undergraduate courses

Graduate programs