Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Machine learning techniques to predict overweight or obesity

dc.contributor.authorRodríguez, Elias [UNESP]
dc.contributor.authorRodríguez, Elen [UNESP]
dc.contributor.authorNascimento, Luiz [UNESP]
dc.contributor.authorSilva, Aneirson da [UNESP]
dc.contributor.authorMarins, Fernando [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Taubaté (UNITAU)
dc.date.accessioned2022-04-28T19:48:24Z
dc.date.accessioned2022-04-28T17:21:51Z
dc.date.available2022-04-28T19:48:24Z
dc.date.available2022-04-28T17:21:51Z
dc.date.issued2021-01-01
dc.description.abstractOverweight and obesity are considered a public health problem, as they are related to the risk of various diseases, and also to the risk of increased morbidity and mortality. The main objective of this work was to apply machine learning techniques for the development of a predictive model for the identification of people with obesity or overweight. The model developed was based on data related to the physical condition and eating habits. Furthermore, the machine learning classification algorithms that were tested were: decision tree,support vector machines, k-nearest neighbors, gaussian naive bayes, multilayer perceptron, random forest, gradient boosting, and extreme gradient boosting. Model hyperparameters were tuned to improve accuracy, resulting in that the model with the best performance was a random forest with 78% accuracy, 79% precision, 78% recall, and 78% F1-score. Finally, the potential of using machine learning models to identify people who are overweight or obese was demonstrated. The practical use of the model developed will allow specialists in the health area to use it as an advantage for decision-making.en
dc.description.affiliationSão Paulo State University (UNESP), Av. Dr. Ariberto Pereira da Cunha, 333
dc.description.affiliationUniversity of Taubaté (UNITAU), Av. Professor Walter Taumaturgo, 739
dc.description.affiliationUnespSão Paulo State University (UNESP), Av. Dr. Ariberto Pereira da Cunha, 333
dc.description.sponsorshipCoordination for the Improvement of Higher Education Personnel
dc.description.sponsorshipIdCoordination for the Improvement of Higher Education Personnel: CAPES -001
dc.format.extent190-204
dc.identifier.citationCEUR Workshop Proceedings, v. 3038, p. 190-204.
dc.identifier.citationIddm 2021: Informatics & Data-driven Medicine: Proceedings Of The 4th International Conference On Informatics & Data-driven Medicine (iddm 2021). Aachen: Rwth Aachen, v. 3038, p. 190-204, 2021.
dc.identifier.issn1613-0073
dc.identifier.scopus2-s2.0-85121261382
dc.identifier.urihttp://hdl.handle.net/11449/243644
dc.identifier.wosWOS:000770795000020
dc.language.isoeng
dc.publisherRwth Aachen
dc.relation.ispartofCEUR Workshop Proceedings
dc.relation.ispartofIddm 2021: Informatics & Data-driven Medicine: Proceedings Of The 4th International Conference On Informatics & Data-driven Medicine (iddm 2021)
dc.sourceScopus
dc.sourceWeb of Science
dc.subjectOverweight and obesityen
dc.subjectBody mass indexen
dc.subjectMachine learningen
dc.subjectClassification modelsen
dc.titleMachine learning techniques to predict overweight or obesityen
dc.typeTrabalho apresentado em eventopt
dcterms.rightsHolderRwth Aachen
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa4071986-4355-47c3-a5a3-bd4d1a966e4f
relation.isOrgUnitOfPublication.latestForDiscoverya4071986-4355-47c3-a5a3-bd4d1a966e4f
unesp.author.orcid0000-0003-1120-1708[1]
unesp.author.orcid0000-0002-3829-4118[2]
unesp.author.orcid0000-0001-9793-750X 0000-0001-9793-750X[3]
unesp.author.orcid0000-0002-2215-0734[4]
unesp.author.orcid0000-0001-6510-9187[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos