Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Assessing Machine Learning Models on Temporal and Multi-Sensor Data for Mapping Flooded Areas

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Natural disasters, particularly floods, are escalating in frequency and intensity, disproportionately impacting economically disadvantaged populations and leading to substantial economic losses. This study leverages temporal and multi-sensor data from Synthetic Aperture Radar (SAR) and multispectral sensors on Sentinel satellites to evaluate a range of supervised and semi-supervised machine learning (ML) models. These models, combined with feature extraction and selection techniques, effectively process large datasets to map flood-affected areas. Case studies in Brazil and Mozambique demonstrate the efficacy of the methods. The Support Vector Machine (SVM) with an RBF kernel, despite achieving high kappa values, tended to overestimate flood extents. In contrast, the Classification and Regression Trees (CART) and Cluster Labeling (CL) methods exhibited superior performance both qualitatively and quantitatively. The Gaussian Mixture Model (GMM), however, showed high sensitivity to input data and was the least effective among the methods tested. This analysis highlights the critical need for careful selection of ML models and preprocessing techniques in flood mapping, facilitating rapid, data-driven decision-making processes.

Descrição

Palavras-chave

classification, digital image analysis, flooding, machine learning, remote sensing

Idioma

Inglês

Citação

Transactions in GIS, v. 29, n. 2, 2025.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso