Logotipo do repositório
 

Publicação:
Comparing different methods for estimating hourly solar ultraviolet radiation: Empirical models, artificial neural network and support vector machine

dc.contributor.authorTeramoto, Érico Tadao [UNESP]
dc.contributor.authorDos Santos, Cícero Manoel
dc.contributor.authorEscobedo, João Francisco [UNESP]
dc.contributor.authorDal Pai, Alexandre [UNESP]
dc.contributor.authorda Silva, Silvia Helena Modenese Gorla [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do Pará (UFPA)
dc.date.accessioned2020-12-12T02:05:55Z
dc.date.available2020-12-12T02:05:55Z
dc.date.issued2020-01-01
dc.description.abstractIn the present paper, the comparison of three of the main estimation methods of solar radiation was performed: empirical models, Artificial Neural Network (ANN) and Support Vector Machine (SVM). Four classical empirical models were calibrated and validated in order to estimate hourly solar UV data in Botucatu, São Paulo State, Brazil. Taken the empirical models as reference of accuracy and set for input variables, the performance of ANN and SVM were assessed. Through the statistical parameters Mean Bias Error (MBE) and Mean Absolute Error (MAE) was confirmed the super-iority of the SVM over the ANN and empirical models. The SVM is capable to generate better results than ANN using a less number of input variables. Among all estimation methods, SVM using the set of input variables {UV0, KT } is con-sidered the best alternative due to the smaller number of input variables and relative precision.en
dc.description.affiliationCampus Experimental da Unesp em Registro Universidade Estadual Paulista “Júlio de Mesquita Filho”
dc.description.affiliationCampus Universitário de Altamira Universidade Federal do Pará
dc.description.affiliationFaculdade de Ciências Agrárias de Botucatu Universidade Estadual Paulista “Júlio de Mesquita Filho”
dc.description.affiliationUnespCampus Experimental da Unesp em Registro Universidade Estadual Paulista “Júlio de Mesquita Filho”
dc.description.affiliationUnespFaculdade de Ciências Agrárias de Botucatu Universidade Estadual Paulista “Júlio de Mesquita Filho”
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipNational Aeronautics and Space Administration
dc.format.extent35-43
dc.identifierhttp://dx.doi.org/10.1590/0102-7786351010
dc.identifier.citationRevista Brasileira de Meteorologia, v. 35, n. 1, p. 35-43, 2020.
dc.identifier.doi10.1590/0102-7786351010
dc.identifier.fileS0102-77862020000100035.pdf
dc.identifier.issn1982-4351
dc.identifier.issn0102-7786
dc.identifier.scieloS0102-77862020000100035
dc.identifier.scopus2-s2.0-85084656556
dc.identifier.urihttp://hdl.handle.net/11449/200413
dc.language.isopor
dc.relation.ispartofRevista Brasileira de Meteorologia
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectInput variables selection
dc.subjectMachine learning
dc.subjectSolar radiation
dc.titleComparing different methods for estimating hourly solar ultraviolet radiation: Empirical models, artificial neural network and support vector machineen
dc.titleComparação de métodos de estimativa da radiação solar ultravioleta horária: Modelos empíricos, redes neurais artificiais e máquina de vetores de suportept
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Agronômica - FCAVRpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S0102-77862020000100035.pdf
Tamanho:
685.58 KB
Formato:
Adobe Portable Document Format