Two-Phase Dendrite and Bimodal Structure in an Al-Cu-Ni Alloy: Their Roles in Hardness
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
With the increasing interest in developing Al-Cu-Ni alloys for use as structural material comes the need to understand more about their processing–microstructure–properties relationships. In this work, an unsteady-state directional solidification technique was used to investigate the influence of growth (v) and cooling (T˙) rates on the microstructure evolution of an Al-15Cu-5Ni alloy (wt.%) and analyze the consequent effects on hardness. The results reveal two-phase dendrites with a trefoil morphology in which the angle between the dendritic arms is around 120°. In addition, the interdendritic regions are shown to be composed of a bimodal structure including irregular block-type (Al7Cu4Ni) and lamellar-type (α-Al + Al2Cu) IMCs. A mechanism is proposed to describe the microstructure formation and evolution as well as experimental equations to represent the growth of dendritic arm spacings in terms of v and T˙. Finally, it is discussed why Al7Cu4Ni and Al2Cu IMCs are shown to have more impact on hardness of the studied alloy than the length scale of two-phase dendrites.
Descrição
Palavras-chave
Al-Cu-Ni alloys, hardness, microstructure, solidification
Idioma
Inglês
Citação
Journal of Materials Engineering and Performance.


