Logotipo do repositório
 

Publicação:
On computational aspects of discrete Sobolev inner products on the unit circle

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

In this paper, we show how to compute in O(n2) steps the Fourier coefficients associated with the Gelfand-Levitan approach for discrete Sobolev orthogonal polynomials on the unit circle when the support of the discrete component involving derivatives is located outside the closed unit disk. As a consequence, we deduce the outer relative asymptotics of these polynomials in terms of those associated with the original orthogonality measure. Moreover, we show how to recover the discrete part of our Sobolev inner product. © 2013 Elsevier Inc. All rights reserved.

Descrição

Palavras-chave

Cholesky decomposition, Computational complexity, Discrete Sobolev inner product, Gelfand-Levitan approach, Outer relative asymptotics, Asymptotics, Computational aspects, Discrete components, Fourier coefficients, Sobolev inner products, Sobolev orthogonal polynomials, Computational methods, Mathematical techniques, Fourier analysis

Idioma

Inglês

Como citar

Applied Mathematics and Computation, v. 223, p. 452-460.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação