Repository logo
 

Publication:
Structure of the nucleon's low-lying excitations

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Article

Access right

Abstract

A continuum approach to the three valence-quark bound-state problem in quantum field theory is used to perform a comparative study of the four lightest (I=1/2,JP=1/2±) baryon isospin doublets in order to elucidate their structural similarities and differences. Such analyses predict the presence of nonpointlike, electromagnetically active quark-quark (diquark) correlations within all baryons; and in these doublets, isoscalar-scalar, isovector-pseudovector, isoscalar-pseudoscalar, and vector diquarks can all play a role. In the two lightest (1/2,1/2+) doublets, however, scalar and pseudovector diquarks are overwhelmingly dominant. The associated rest-frame wave functions are largely S-wave in nature; and the first excited state in this 1/2+ channel has the appearance of a radial excitation of the ground state. The two lightest (1/2,1/2-) doublets fit a different picture: accurate estimates of their masses are obtained by retaining only pseudovector diquarks; in their rest frames, the amplitudes describing their dressed-quark cores contain roughly equal fractions of even- and odd-parity diquarks; and the associated wave functions are predominantly P-wave in nature, but possess measurable S-wave components. Moreover, the first excited state in each negative-parity channel has little of the appearance of a radial excitation. In quantum field theory, all differences between positive- and negative-parity channels must owe to chiral symmetry breaking, which is overwhelmingly dynamical in the light-quark sector. Consequently, experiments that can validate the contrasts drawn herein between the structure of the four lightest (1/2,1/2±) doublets will prove valuable in testing links between emergent mass generation and observable phenomena and, plausibly, thereby revealing dynamical features of confinement.

Description

Keywords

Language

English

Citation

Physical Review D, v. 97, n. 3, 2018.

Related itens

Units

Departments

Undergraduate courses

Graduate programs