Repository logo
 

Publication:
Comparison of adaptive neuro-fuzzy inference system (ANFIS) and machine learning algorithms for electricity production forecasting

dc.contributor.authorRodriguez, Elen Y. A. [UNESP]
dc.contributor.authorGamboa, Alexander A. R.
dc.contributor.authorRodriguez, Elias C. A. [UNESP]
dc.contributor.authorSilva, Aneirson F. da [UNESP]
dc.contributor.authorRizol, Paloma M. S. R. [UNESP]
dc.contributor.authorMarins, Fernando A. S. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionInst Tecnol Aeronaut (ITA)
dc.date.accessioned2022-11-30T13:41:56Z
dc.date.available2022-11-30T13:41:56Z
dc.date.issued2022-10-01
dc.description.abstractCombined cycle power plants (CCPP) are popular in the energy sector for the production of electricity, and are the union of two thermodynamic cycles, corresponding to the steam turbine and the gas turbine. This paper presents the application of several machine learning (ML) techniques and the adaptive neuro-fuzzy inference system (ANFIS) to predict the hourly electricity production in a CCPP. The models were developed using 5-fold cross-validation with the collected features of temperature, exhaust pressure, relative humidity, ambient pressure, and electricity production per hour (the target feature). The hyperparameters of the tested models were optimized. The correlation and determination coefficients of the models were higher than 92%, showing a significant performance. The ANFIS (r = 98% e R2 = 95%) model shows the lowest values in the evaluated error metrics, compared to the other ML models. Finally, the results showed the effectiveness of ANFIS in predicting the hourly production of electricity in CCPP.en
dc.description.affiliationUniv Estadual Paulista, Fac Engn Guaratingueta, Guaratingueta, Brazil
dc.description.affiliationInst Tecnol Aeronaut, Sao Jose Dos Campos, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Engn Guaratingueta, Guaratingueta, Brazil
dc.format.extent2288-2294
dc.identifierhttp://dx.doi.org/10.1109/TLA.2022.9885166
dc.identifier.citationIeee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 20, n. 10, p. 2288-2294, 2022.
dc.identifier.doi10.1109/TLA.2022.9885166
dc.identifier.issn1548-0992
dc.identifier.urihttp://hdl.handle.net/11449/237688
dc.identifier.wosWOS:000852215100010
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Latin America Transactions
dc.sourceWeb of Science
dc.subjectElectricity
dc.subjectPower generation
dc.subjectFuzzy neural networks
dc.subjectMachine learning
dc.subjectPredictive models
dc.titleComparison of adaptive neuro-fuzzy inference system (ANFIS) and machine learning algorithms for electricity production forecastingen
dc.typeArtigopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Files