Publicação: Influence of different cellulose/hemicellulose/lignin ratios on the thermal degradation behavior: prediction and optimization
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Vegetal fibers can be applied in several areas, from the medical field to the development of new advanced materials. They have a complex chemical structure including cellulose, hemicellulose, and lignin. Each component plays a different role in the thermal degradation. Apart from it, this study aims to simulate and predict different ratios of cellulose/hemicellulose/lignin in the thermal degradation behavior of a vegetal fiber. This study was divided into two distinct parts: (i) firstly, the thermogravimetric curves (TG) were simulated based on their chemical composition to verify the influence of each component ratio in the degradation behavior. Briefly, 100% hemicellulose sample showed the lowest Tonset, 100% lignin sample showed the highest residue, and 100% cellulose sample showed the lowest residue at 600 °C among all samples studied. (ii) Secondly, a prediction of the thermal behavior for any combination of cellulose, hemicellulose, and lignin was performed by using an artificial neural network (ANN) combined with a surface response methodology (SRM). The prediction curves presented high reliability with the experimental fit, which allowed the thermal degradation behavior prediction of a vegetal fiber with any cellulose, hemicellulose, and lignin ratio. Graphical abstract: [Figure not available: see fulltext.].
Descrição
Palavras-chave
Artificial neural network, Cellulose/hemicellulose/lignin, Surface response methodology, Thermal behavior, Thermal degradation
Idioma
Inglês
Como citar
Biomass Conversion and Biorefinery.