Publicação: Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
dc.contributor.author | Moretti, Jose Fernando [UNESP] | |
dc.contributor.author | Minussi, Carlos Roberto [UNESP] | |
dc.contributor.author | Akasaki, Jorge Luis [UNESP] | |
dc.contributor.author | Fioriti, Cesar Fabiano [UNESP] | |
dc.contributor.author | Pinheiro Melges, Jose Luiz [UNESP] | |
dc.contributor.author | Tashima, Mauro Mitsuuchi [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T16:32:27Z | |
dc.date.available | 2018-11-26T16:32:27Z | |
dc.date.issued | 2016-01-01 | |
dc.description.abstract | Currently, artificial neural networks are being widely used in various fields of science and engineering. Neural networks have the ability to learn through experience and existing examples, and then generate solutions and answers to new problems, involving even the effects of non-linearity in their variables. The aim of this study is to use a feed-forward neural network with back-propagation technique, to predict the values of compressive strength and modulus of elasticity, at 28 days, of different concrete mixtures prepared and tested in the laboratory. It demonstrates the ability of the neural networks to quantify the strength and the elastic modulus of concrete specimens prepared using different mix proportions. | en |
dc.description.affiliation | Univ Estadual Paulista, Fac Engn Ilha Solteira, Ave Brasil 56, BR-15385000 Sao Paulo, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Fac Ciencias & Tecnol Presidente Prudent, BR-15385000 Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Fac Engn Ilha Solteira, Ave Brasil 56, BR-15385000 Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Fac Ciencias & Tecnol Presidente Prudent, BR-15385000 Sao Paulo, Brazil | |
dc.format.extent | 65-70 | |
dc.identifier | http://dx.doi.org/10.4025/actascitechnol.v38i1.27194 | |
dc.identifier.citation | Acta Scientiarum-technology. Maringa: Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao, v. 38, n. 1, p. 65-70, 2016. | |
dc.identifier.doi | 10.4025/actascitechnol.v38i1.27194 | |
dc.identifier.issn | 1806-2563 | |
dc.identifier.lattes | 2644132857349338 | |
dc.identifier.lattes | 8316729380117323 | |
dc.identifier.orcid | 0000-0001-5461-4495 | |
dc.identifier.uri | http://hdl.handle.net/11449/161366 | |
dc.identifier.wos | WOS:000373403900009 | |
dc.language.iso | eng | |
dc.publisher | Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao | |
dc.relation.ispartof | Acta Scientiarum-technology | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | modulus of elasticity | |
dc.subject | compressive strength | |
dc.subject | concrete | |
dc.subject | neural networks | |
dc.subject | artificial intelligence | |
dc.title | Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks | en |
dc.type | Artigo | |
dcterms.rightsHolder | Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao | |
dspace.entity.type | Publication | |
unesp.author.lattes | 2644132857349338 | |
unesp.author.lattes | 7166279400544764[2] | |
unesp.author.lattes | 8316729380117323[4] | |
unesp.author.orcid | 0000-0001-6428-4506[2] | |
unesp.author.orcid | 0000-0001-5461-4495[4] | |
unesp.department | Fitotecnia, Tecnologia de Alimentos e Socioeconomia - FEIS | pt |