Logotipo do repositório
 

Publicação:
Hard-Needle Elastomer in One Spatial Dimension

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

We perform exact statistical mechanics calculations for a system of elongated objects (hard needles) that are restricted to translate along a line and rotate within a plane, and that interact via both excluded-volume steric repulsion and harmonic elastic forces between neighbors. This system represents a one-dimensional model of a liquid crystal elastomer, and has a zero-tension critical point that we describe using the transfer-matrix method. In the absence of elastic interactions, we build on previous results by Kantor and Kardar, and find that the nematic order parameter Q decays linearly with tension σ. In the presence of elastic interactions, the system exhibits a standard universal scaling form, with Q/|σ| being a function of the rescaled elastic energy constant k/|σ|Δ, where Δ is a critical exponent equal to 2 for this model. At zero tension, simple scaling arguments lead to the asymptotic behavior Q∼k1/Δ, which does not depend on the equilibrium distance of the springs in this model.

Descrição

Palavras-chave

Elastomers, Exact solvable models, Liquid crystals, Rigid rotors

Idioma

Inglês

Como citar

Brazilian Journal of Physics, v. 53, n. 3, 2023.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação