Bifurcation of limit cycles from a periodic annulus formed by a center and two saddles in piecewise linear differential system with three zones
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines, such that the linear differential systems that define the piecewise one have a center and two saddles. That is, the linear differential system in the region between the two parallel lines (called of central subsystem) has a center and the others subsystems have saddles. We prove that if the central subsystem has a real or a boundary center, then at least six limit cycles can bifurcate from the periodic annulus by linear perturbations. Four passing through the three zones and two passing through two zones. Now, if the central subsystem has a virtual center, then at leas four limit cycles can bifurcate from the periodic annulus by linear perturbations, three passing through the three zones and one passing through two zones. For this, we obtain a normal form for these piecewise Hamiltonian systems and study the number of zeros of its Melnikov functions defined in two and three zones.
Descrição
Palavras-chave
Limit cycles, Melnikov function, Periodic annulus, Piecewise Hamiltonian differential system
Idioma
Inglês
Citação
Nonlinear Analysis: Real World Applications, v. 80.




