Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Bifurcation of limit cycles from a periodic annulus formed by a center and two saddles in piecewise linear differential system with three zones

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines, such that the linear differential systems that define the piecewise one have a center and two saddles. That is, the linear differential system in the region between the two parallel lines (called of central subsystem) has a center and the others subsystems have saddles. We prove that if the central subsystem has a real or a boundary center, then at least six limit cycles can bifurcate from the periodic annulus by linear perturbations. Four passing through the three zones and two passing through two zones. Now, if the central subsystem has a virtual center, then at leas four limit cycles can bifurcate from the periodic annulus by linear perturbations, three passing through the three zones and one passing through two zones. For this, we obtain a normal form for these piecewise Hamiltonian systems and study the number of zeros of its Melnikov functions defined in two and three zones.

Descrição

Palavras-chave

Limit cycles, Melnikov function, Periodic annulus, Piecewise Hamiltonian differential system

Idioma

Inglês

Citação

Nonlinear Analysis: Real World Applications, v. 80.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso