Publicação: Modeling and analysis of artificial neural networks applied in operations research
dc.contributor.author | da Silva, I. N. | |
dc.contributor.author | de Souza, A. N. | |
dc.contributor.author | Bordon, M. E. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T13:27:11Z | |
dc.date.available | 2014-05-20T13:27:11Z | |
dc.date.issued | 2001-01-01 | |
dc.description.abstract | Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC. | en |
dc.description.affiliation | UNESP, FE, DEE, Sch Engn,Dept Elect Engn, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliationUnesp | UNESP, FE, DEE, Sch Engn,Dept Elect Engn, BR-17033360 Bauru, SP, Brazil | |
dc.format.extent | 315-320 | |
dc.identifier | https://getinfo.de/app/Modeling-and-Analysis-of-Artificial-Neural-Networks/id/BLCP%3ACN044545070 | |
dc.identifier.citation | Manufacturing, Modeling, Management and Control, Proceedings. Kidlington: Pergamon-Elsevier B.V., p. 315-320, 2001. | |
dc.identifier.issn | 0962-9505 | |
dc.identifier.lattes | 8212775960494686 | |
dc.identifier.lattes | 5589838844298232 | |
dc.identifier.orcid | 0000-0001-8510-8245 | |
dc.identifier.uri | http://hdl.handle.net/11449/8879 | |
dc.identifier.wos | WOS:000177912500054 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Manufacturing, Modeling, Management and Control, Proceedings | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | operations research | pt |
dc.subject | neural networks | pt |
dc.subject | linear programming | pt |
dc.subject | artificial intelligence | pt |
dc.subject | parameter optimization | pt |
dc.title | Modeling and analysis of artificial neural networks applied in operations research | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
dspace.entity.type | Publication | |
unesp.author.lattes | 8212775960494686[2] | |
unesp.author.lattes | 5589838844298232 | |
unesp.author.orcid | 0000-0002-8617-5404[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Bauru | pt |
unesp.department | Engenharia Elétrica - FEB | pt |
Arquivos
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: